【題目】如圖,點(diǎn)D是⊙O的直徑CA延長(zhǎng)線上一點(diǎn),點(diǎn)B在⊙O上,且∠DBA=∠BCD.
(1)證明:BD是⊙O的切線.
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且△BEF的面積為16,cos∠BFA=,那么,你能求出△ACF的面積嗎?若能,請(qǐng)你求出其面積;若不能,請(qǐng)說明理由.
【答案】(1)證明見解析;(2)36.
【解析】(1)BD是⊙O的切線.先連接OB,由于AC是直徑,那么∠ABC=90°,于是∠1+∠C=90°,而OA=OB,可得∠1=∠2,結(jié)合∠3=∠C,易得∠2+∠3=90°,從而可證DB是⊙O的切線;
(2)由于cos∠BFA=,那么,利用圓周角定理可知∠E=∠C,∠4=∠5,易證△EBF∽△CAF,于是,從而易求△ACF的面積.
(1)BD是⊙O的切線.理由如下:
如圖所示,連接OB.
∵AC是⊙O的直徑,∴∠ABC=90°,∴∠1+∠C=90°.
∵OA=OB,∴∠1=∠2,∴∠2+∠C=90°.
∵∠3=∠C,∴∠2+∠3=90°,∴DB是⊙O的切線;
(2)在Rt△ABF中.
∵cos∠BFA=.
∵∠E=∠C,∠4=∠5,∴△EBF∽△CAF,
∴,即,解得:S△ACF=22.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,回答問題:
材料一:
自然數(shù)的發(fā)現(xiàn)是人類數(shù)學(xué)研究的開端,我們?cè)谘芯孔匀粩?shù)的時(shí)候采用的進(jìn)制為十進(jìn)制.現(xiàn)定義:位數(shù)相同且對(duì)應(yīng)數(shù)位上的數(shù)字之和為10的兩個(gè)數(shù)互為“親密數(shù)”,例如:3與7互為“親密數(shù)”,16的“親密數(shù)”為94.
材料二:
若的“親密數(shù)”為,記為的“親密差”例如:72的“親密數(shù)”為38.
,則34為72的“親密差”.
根據(jù)材料,回答下列問題:
(1)請(qǐng)?zhí)羁眨?/span>64的“親密數(shù)”為______;25的“親密差”為______;
(2)某兩位數(shù)個(gè)位上的數(shù)字比十位上的數(shù)字大2,且這個(gè)兩位數(shù)的“親密數(shù)”等于它的倍,求這個(gè)兩位數(shù)的“親密差”:
(3)某個(gè)三位數(shù)(,且為整數(shù)),記,若的值為一個(gè)整數(shù),求這個(gè)整數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B,D為兩島上的兩座燈塔的塔頂,測(cè)量船于水面A處測(cè)得B點(diǎn)和D點(diǎn)的仰角分別為75°,30°.于水面C處測(cè)得B點(diǎn)和D點(diǎn)的仰角均為60°,AC=0.1km.
(1)試探究圖中B,D間距離與另外哪兩點(diǎn)間距離相等;
(2)求B點(diǎn)距水平面的高度(計(jì)算結(jié)果精確到0.01km,參考數(shù)據(jù):≈1.73,tan75°≈3.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,N是DC的中點(diǎn),M是AD上異于D的點(diǎn),且∠NMB=∠MBC,則tan∠ABM=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直角三角板和直角三角板,,,
.
(1)如圖1,將頂點(diǎn)和頂點(diǎn)重合,保持三角板不動(dòng),將三角板繞點(diǎn)旋轉(zhuǎn).當(dāng)平分時(shí),求的度數(shù);
(2)在(1)的條件下,繼續(xù)旋轉(zhuǎn)三角板,猜想與有怎樣的數(shù)量關(guān)系?并利用圖2所給的情形說明理由;
(3)如圖3,將頂點(diǎn)和頂點(diǎn)重合,保持三角板不動(dòng),將三角板繞點(diǎn)旋轉(zhuǎn).當(dāng)落在內(nèi)部時(shí),直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,若將此圖中虛線用剪刀均分為四塊小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形,請(qǐng)問:這兩個(gè)圖形的什么量不變?請(qǐng)?zhí)顚戇@個(gè)量的名稱 .所得的正方形的面積比原長(zhǎng)方形的面積多出的陰影部分的面積用含a,b的代數(shù)式表示 ;
(2)由①的探索中,可以得出的結(jié)論是:在周長(zhǎng)一定的長(zhǎng)方形中,當(dāng) 時(shí),面積最大;
(3)若一長(zhǎng)方形的周長(zhǎng)為36厘米,則當(dāng)邊長(zhǎng)為多少時(shí),該圖形的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長(zhǎng)為16cm,則四辺形ABFD的周長(zhǎng)為( )
A. 16cmB. 18cmC. 20cmD. 22cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E在BC的延長(zhǎng)線上,且CE=BC,AE=AB,AE、DC相交于點(diǎn)O,連接DE.若∠AOD=120°,AC=4,則CD的大小為( 。
A.8B.4C.8D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三點(diǎn)A、B、C.
(1)請(qǐng)讀下列語(yǔ)句,并分別畫出圖形
畫直線AB;畫射線AC;連接BC.
(2)在(1)的條件下,圖中共有 條射線.
(3)從點(diǎn)C到點(diǎn)B的最短路徑是 ,依據(jù)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com