【題目】如圖,在平面直角坐標(biāo)系xOy中,已知△OAB的兩個頂點的坐標(biāo)分別是A30),B2,3).

1)畫出△OAB關(guān)于y軸對稱的△OA1B1,其中點A,B的對應(yīng)點分別為A1,B1,并直接寫出點A1,B1的坐標(biāo);

2)點Cy軸上一動點,連接A1CB1C,求A1C+B1C的最小值并求出此時點C的坐標(biāo).

【答案】1)見解析,點A1(﹣3,0),點B1(﹣2,3);(2)最小值等于,此時點C的坐標(biāo)為(0,).

【解析】

1)根據(jù)軸對稱圖形的性質(zhì)作出△OA1B1,并寫出A1的坐標(biāo)和B1的坐標(biāo)即可;

2)設(shè)直線A1B的解析式為ykx+b,代入A1(﹣3,0),B2,3),解得直線A1B的解析式,令x0即可得出點C的坐標(biāo);

1)如圖所示,△OA1B1即為所求,點A1的坐標(biāo)為(﹣30),點B1的坐標(biāo)為(﹣23);

2)如圖所示,A1C+B1C的最小值等于A1B

設(shè)直線A1B的解析式為ykx+b,

A1(﹣30),B2,3),可得

解得 ,

∴直線A1B的解析式為yx+

x0,則y,

此時點C的坐標(biāo)為(0,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某校為了創(chuàng)建書香校園,去年購進(jìn)一批圖書.經(jīng)了解,科普書的單價比文學(xué)書的單價多4元,用12000元購進(jìn)的科普書與用8000元購進(jìn)的文學(xué)書本數(shù)相等.

1)文學(xué)書和科普書的單價各多少錢?

2)今年文學(xué)書和科普書的單價和去年相比保持不變,該校打算用10000元再購進(jìn)一批文學(xué)書和科普書,問購進(jìn)文學(xué)書550本后至多還能購進(jìn)多少本科普書?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一直角三角形紙片,邊,,,將該直角三角形紙片沿折疊,使點與點重合,則四邊形的周長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,△ABC的每一個頂點都在格點上,AB5,點DAB邊上的動點(點D不與點A,B重合),將線段AD沿直線AC翻折后得到對應(yīng)線段AD1,將線段BD沿直線BC翻折后得到對應(yīng)線段BD2,連接D1D2,則四邊形D1ABD2的面積的最小值是 ____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究

(1)如圖①,已知正方形ABCD的邊長為4.點MN分別是邊BCCD上兩點,且BMCN,連接AMBN,交于點P.猜想AMBN的位置關(guān)系,并證明你的結(jié)論.

(2)如圖②,已知正方形ABCD的邊長為4.點MN分別從點B、C同時出發(fā),以相同的速度沿BC、CD方向向終點CD運動.連接AMBN,交于點P,求APB周長的最大值;

問題解決

(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60°.點MN分別從點B、C同時出發(fā),以相同的速度沿BC、CA向終點CA運動.連接AMBN,交于點P.求APB周長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO直徑,ACO的弦,過O外的點DDEOA于點E,交AC于點F,連接DC并延長交AB的延長線于點P,且D=2∠A,作CHAB于點H

1)判斷直線DCO的位置關(guān)系,并說明理由;

2)若HB=2,cosD=,請求出AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,點、分別是等邊、上的點,連接、,若,求證:

(2)如圖2,在(1)問的條件下,點的延長線上,連接延長線于點,.若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方格紙中的每個小方格都是邊長為1個單位的正方形在建立平面直角坐標(biāo)系后,ABC的頂點均在格點上,C的坐標(biāo)為4,-1).

1請以y軸為對稱軸畫出與△ABC對稱的△A1B1C1,并直接寫出點A1、B1C1的坐標(biāo);

2ABC的面積是

3Pa+1b-1與點C關(guān)于x軸對稱,a= b=

查看答案和解析>>

同步練習(xí)冊答案