【題目】在四邊形ABCD中,AD∥BC,AD=2BC,點(diǎn)E為AD的中點(diǎn),連接BE、BD,∠ABD=90°.
(1)如圖l,求證:四邊形BCDE為菱形;
(2)如圖2,連接AC交BD于點(diǎn)F,連接EF,若AC平分∠BAD,在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖2中四個(gè)三角形,使寫(xiě)出的每個(gè)三角形的面積都等于△ABC面積的.
【答案】(1)見(jiàn)解析;(2)△ABF,△AEF,△DEF,△DCF.
【解析】
(1)由題意可得DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問(wèn)題;
(2)由題意可證△BFC∽△DFA,由相似三角形的性質(zhì)可得,FD=2BF,由三角形的中線性質(zhì)和菱形性質(zhì)可求解.
證明(1)∵AD=2BC,E為AD的中點(diǎn),
∴DE=BC,
∵AD∥BC,
∴四邊形BCDE是平行四邊形,
∵∠ABD=90°,AE=DE,
∴BE=DE,
∴四邊形BCDE是菱形.
(2)△ABF,△AEF,△DEF,△DCF,
理由如下:∵BC∥AD,
∴△BFC∽△DFA,
∴,
∴,FD=2BF,
∴S△ABF=S△ABC,
∵FD=2BF
∴S△AFD=2S△ABF,且點(diǎn)E是AD中點(diǎn),
∴S△AEF=S△EFD=S△ABF=S△ABC,
∵四邊形BEDC是菱形,
∴ED=CD,∠BDE=∠BDC,且DF=DF,
∴△DEF≌△DCF(SAS),
∴S△DCF=S△DEF=S△ABF=S△ABC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與軸和軸分別交于點(diǎn)和點(diǎn)拋物線經(jīng)過(guò)點(diǎn)與直線的另一個(gè)交點(diǎn)為.
求的值和拋物線的解析式
點(diǎn)在拋物線上,軸交直線于點(diǎn)點(diǎn)在直線上,且四邊形為矩形.設(shè)點(diǎn)的橫坐標(biāo)為矩形的周長(zhǎng)為求與的函數(shù)關(guān)系式以及的最大值
將繞平面內(nèi)某點(diǎn)逆時(shí)針旋轉(zhuǎn)得到(點(diǎn)分別與點(diǎn)對(duì)應(yīng)),若的兩個(gè)頂點(diǎn)恰好落在拋物線上,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC和△CDE都是等腰三角形,∠BAC=∠EDC=120°.
(1)如圖1,A、D、C在同一直線上時(shí),=_______,=_______;
(2)在圖1的基礎(chǔ)上,固定△ABC,將△CDE繞C旋轉(zhuǎn)一定的角度α(0°<α<360°),如圖2,連接AD、BE.
① 的值有沒(méi)有改變?請(qǐng)說(shuō)明理由.
②拓展研究:若AB=1,DE=,當(dāng) B、D、E在同一直線上時(shí),請(qǐng)計(jì)算線段AD的長(zhǎng);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線的頂點(diǎn)坐標(biāo)為(0,1)且經(jīng)過(guò)點(diǎn)A(1,2),直線y=3x﹣4經(jīng)過(guò)點(diǎn)B(,n),與y軸交點(diǎn)為C.
(1)求拋物線的解析式及n的值;
(2)將直線BC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的直線的解析式;
(3)如圖2將拋物線繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)45°得到新曲線,新曲線與直線BC交于點(diǎn)M、N,點(diǎn)M在點(diǎn)N的上方,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在網(wǎng)格圖中建立平面直角坐標(biāo)系,的頂點(diǎn)坐標(biāo)為、、.
(1)若將向右平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,請(qǐng)畫(huà)出平移后的;
(2)畫(huà)出繞C1順時(shí)針?lè)较蛐D(zhuǎn)90°后得到的;
(3)與是中心對(duì)稱圖形,請(qǐng)寫(xiě)出對(duì)稱中心的坐標(biāo): ;并計(jì)算的面積: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點(diǎn)E、F,CE=2,連接CF,以下結(jié)論:①△ABF≌△CBF;②點(diǎn)E到AB的距離是2;③tan∠DCF=;④△ABF的面積為.其中一定成立的是 (把所有正確結(jié)論的序號(hào)都填在橫線上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,分別是邊上的點(diǎn),,將沿所在直線折疊,點(diǎn)的對(duì)應(yīng)點(diǎn)正好落在線段上,若,則折痕的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是的中點(diǎn),連接AC并延長(zhǎng)至點(diǎn)D,使CD=AC,點(diǎn)E是OB上一點(diǎn),且,CE的延長(zhǎng)線交DB的延長(zhǎng)線于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.
(1)求證:BD是⊙O的切線;(2)當(dāng)OB=2時(shí),求BH的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com