【題目】在四邊形ABCD中,ADBC,AD2BC,點(diǎn)EAD的中點(diǎn),連接BE、BD,∠ABD90°

1)如圖l,求證:四邊形BCDE為菱形;

2)如圖2,連接ACBD于點(diǎn)F,連接EF,若AC平分∠BAD,在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖2中四個(gè)三角形,使寫(xiě)出的每個(gè)三角形的面積都等于ABC面積的

【答案】(1)見(jiàn)解析;(2ABF,AEF,DEF,DCF.

【解析】

1)由題意可得DE=BC,DEBC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問(wèn)題;
2)由題意可證△BFC∽△DFA,由相似三角形的性質(zhì)可得,FD=2BF,由三角形的中線性質(zhì)和菱形性質(zhì)可求解.

證明(1AD2BC,EAD的中點(diǎn),

DEBC,

ADBC

四邊形BCDE是平行四邊形,

∵∠ABD90°AEDE,

BEDE

四邊形BCDE是菱形.

2ABF,AEFDEF,DCF

理由如下:BCAD,

∴△BFC∽△DFA

,

FD2BF,

SABFSABC

FD2BF

SAFD2SABF,且點(diǎn)EAD中點(diǎn),

SAEFSEFDSABFSABC,

四邊形BEDC是菱形,

EDCD,BDEBDC,且DFDF,

∴△DEF≌△DCFSAS),

SDCFSDEFSABFSABC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線軸和軸分別交于點(diǎn)和點(diǎn)拋物線經(jīng)過(guò)點(diǎn)與直線的另一個(gè)交點(diǎn)為

的值和拋物線的解析式

點(diǎn)在拋物線上,軸交直線于點(diǎn)點(diǎn)在直線上,且四邊形為矩形.設(shè)點(diǎn)的橫坐標(biāo)為矩形的周長(zhǎng)為的函數(shù)關(guān)系式以及的最大值

繞平面內(nèi)某點(diǎn)逆時(shí)針旋轉(zhuǎn)得到(點(diǎn)分別與點(diǎn)對(duì)應(yīng)),若的兩個(gè)頂點(diǎn)恰好落在拋物線上,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCCDE都是等腰三角形,∠BAC=∠EDC120°

1)如圖1,AD、C在同一直線上時(shí),_______,_______;

2)在圖1的基礎(chǔ)上,固定ABC,將CDEC旋轉(zhuǎn)一定的角度α(0°α360°),如圖2,連接AD、BE

的值有沒(méi)有改變?請(qǐng)說(shuō)明理由.

②拓展研究:若AB1,DE,當(dāng) BD、E在同一直線上時(shí),請(qǐng)計(jì)算線段AD的長(zhǎng);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知拋物線的頂點(diǎn)坐標(biāo)為(0,1)且經(jīng)過(guò)點(diǎn)A12),直線y3x4經(jīng)過(guò)點(diǎn)B,n),與y軸交點(diǎn)為C

1)求拋物線的解析式及n的值;

2)將直線BC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的直線的解析式;

3)如圖2將拋物線繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)45°得到新曲線,新曲線與直線BC交于點(diǎn)M、N,點(diǎn)M在點(diǎn)N的上方,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,DEBC,EFAB,則下列結(jié)論正確的是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在網(wǎng)格圖中建立平面直角坐標(biāo)系,的頂點(diǎn)坐標(biāo)為、

1)若將向右平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,請(qǐng)畫(huà)出平移后的;

2)畫(huà)出C1順時(shí)針?lè)较蛐D(zhuǎn)90°后得到的;

3是中心對(duì)稱圖形,請(qǐng)寫(xiě)出對(duì)稱中心的坐標(biāo): ;并計(jì)算的面積:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°AE分別交BC、BD于點(diǎn)E、F,CE=2,連接CF,以下結(jié)論:①△ABF≌△CBF;點(diǎn)EAB的距離是2;③tan∠DCF=;④△ABF的面積為.其中一定成立的是 (把所有正確結(jié)論的序號(hào)都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,分別是邊上的點(diǎn),,將沿所在直線折疊,點(diǎn)的對(duì)應(yīng)點(diǎn)正好落在線段上,若,則折痕的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C的中點(diǎn),連接AC并延長(zhǎng)至點(diǎn)D,使CDAC,點(diǎn)EOB上一點(diǎn),且,CE的延長(zhǎng)線交DB的延長(zhǎng)線于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH

1)求證:BD是⊙O的切線;(2)當(dāng)OB2時(shí),求BH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案