精英家教網 > 初中數學 > 題目詳情

【題目】某校門口豎著“前方學校,減速慢行”的交通指示牌CD,數學“綜合與實踐”小組的同學將“測量交通指示牌CD的高度”作為一項課題活動,他們定好了如下測量方案:

項目

內容

課題

測量交通指示牌CD的高度

測量示意圖

測量步驟

(1)從交通指示牌下的點M處出發(fā)向前走10 米到達A處;

(2)在點A處用量角儀測得∠DAM27°;

(3)從點A沿直線MA向前走10米到達B處;(4)在點B處用量角儀測得∠CBA18°.

請你幫助該小組同學根據上表中的測量數據,求出交通指示牌CD的高度.(參考數據sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,sin18°≈0.31cos18°≈0.95,tan18°≈0.32)

【答案】交通指示牌CD的高度約為1.3米.

【解析】

在△CMB中求出CM的長度,在△ADM中,求出DM的長度,最后利用CDCMDM得出結果.

解:在RtCMB中,

∵∠CMB90°,MBAMAB20米,∠CBA18°,

CMMB·tan 18°20tan 18°()

RtADM中,

∵∠AMD90°,∠MAD27°,

DMAM·tan 27°10tan 27°(),

CDCMDM20tan 18°10tan27°≈1.3()

答:交通指示牌CD的高度約為1.3米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.

(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;

(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在四邊形中,,直線.當直線沿射線方向,從點開始向右平移時,直線與四邊形的邊分別相交于點、.設直線向右平移的距離為,線段的長為,且的函數關系如圖2所示,則四邊形的周長是_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,的直徑,是弦,是弧的中點,過點垂直于直線垂足為,交的延長線于點

求證:的切線;

,求的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是一種雪球夾的簡化結構圖,其通過一個固定夾體和一個活動夾體的配合巧妙地完成夾雪、投雪的操作,不需人手直接接觸雪,使用方便,深受小朋友的喜愛.當雪球夾閉合時,測得∠AOB30°,OAOB14 cm,則此款雪球夾制作的雪球的直徑AB的長度為________ cm(結果保留一位小數.參考數據:sin15°≈026cos15°≈097,tan15°≈027)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結AP并延長APCDF點,

1)求證:△CBE≌△CPE

2)求證:四邊形AECF為平行四邊形;

3)若矩形ABCD的邊AB6BC4,求△CPF的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,AD是△ABC的中線,AEBC,射線BEAD于點F,交⊙O于點G,點FBE的中點,連接CE.

(1)求證:四邊形ADCE為平行四邊形;

(2)若BC=2AB,求證:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】矩形Ⅰ的面積為6,矩形Ⅱ中的三條邊總長為6,則下列說法不正確的是( 。

A.矩形Ⅰ中一組鄰邊的長滿足反比例函數關系

B.矩形Ⅰ中一組鄰邊的長可能是3+3

C.矩形Ⅰ的周長不可能是8

D.矩形Ⅱ的最大面積是3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線yx+4與拋物線y=﹣x2+bx+cb,c是常數)交于A、B兩點,點Ax軸上,點By軸上.設拋物線與x軸的另一個交點為點C

1)求該拋物線的解析式;

2P是拋物線上一動點(不與點A、B重合),

①如圖2,若點P在直線AB上方,連接OPAB于點D,求的最大值;

②如圖3,若點Px軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點P的運動,正方形的大小、位置也隨之改變.當頂點EF恰好落在y軸上,直接寫出對應的點P的坐標.

查看答案和解析>>

同步練習冊答案