24、細(xì)觀察,找規(guī)律
如圖已知AB∥CD,填空:
(1)∠1+∠2=
180°

(2)∠1+∠2+∠3=
360°
;
(3)∠1+∠2+3+∠4=
540°

(4)∠1+∠2+∠3+…+∠n=
180°(n-1)
分析:(1)中,根據(jù)兩條直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)作答;
(2)過(guò)點(diǎn)E作平行于AB的直線(xiàn),運(yùn)用兩次兩條直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)即可得到三個(gè)角的和;
(3)分別過(guò)點(diǎn)E,F(xiàn)作AB的平行線(xiàn),運(yùn)用三次平行線(xiàn)的性質(zhì),即可得到四個(gè)角的和;
(4)同樣作輔助線(xiàn),運(yùn)用(n-1)次平行線(xiàn)的性質(zhì),則n個(gè)角的和是(n-1)180°.
解答:解:(1)∵AB∥CD,
∴∠1+∠2=180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ));

(2)過(guò)點(diǎn)E作一條直線(xiàn)EF平行于AB,
∵AB∥CD,
∵AB∥EF,CD∥EF,
∴∠1+∠AEF=180°,∠FEC+∠3=180°,
∴∠1+∠2+∠3=360°;

(3)過(guò)點(diǎn)E、F作EM、FN平行于AB,
∵AB∥CD,
∵AB∥EM∥FN∥CD,
∴∠1+∠AEM=180°,∠MEF+∠EFN=180°,∠NFC+∠4=180°;
∴∠1+∠2+3+∠4=540°;

(4)中,根據(jù)上述規(guī)律,顯然作(n-1)條輔助線(xiàn),運(yùn)用(n-1)次兩條直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ).即可得到n個(gè)角的和是180°(n-1).
點(diǎn)評(píng):注意構(gòu)造輔助線(xiàn)以及平行線(xiàn)的性質(zhì)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

細(xì)觀察,找規(guī)律
如圖已知AB∥CD,填空:
(1)∠1+∠2=______;
(2)∠1+∠2+∠3=______;
(3)∠1+∠2+3+∠4=______;
(4)∠1+∠2+∠3+…+∠n=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案