【題目】安徽某水產(chǎn)養(yǎng)殖戶去年利用稻蝦混養(yǎng)使每千克小龍蝦養(yǎng)殖成本降為6元,在整個(gè)銷售旺季的80天里,銷售單價(jià)P(元/千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系為:P=,日銷售量y(千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系如圖所示.

(1)求日銷售y與時(shí)間t的函數(shù)關(guān)系式?

(2)設(shè)日銷售利潤(rùn)為W(元),求Wt之間的函數(shù)表達(dá)式;

(3)日銷售利潤(rùn)W哪一天最大?最大利潤(rùn)是多少?

【答案】(1) y=﹣2t+200(1≤t≤80,t為整數(shù));(2) ①當(dāng)1≤t≤40時(shí),w=﹣(t﹣30)2+2450.②當(dāng)41≤t≤80時(shí),w=﹣52t+5200;(3) 41天的日銷售利潤(rùn)最大,最大利潤(rùn)為3068元.

【解析】

根據(jù)函數(shù)圖象,利用待定系數(shù)法求解可得;

設(shè)日銷售利潤(rùn)為w,根據(jù)總利潤(rùn)=每千克利潤(rùn)×銷售量列出函數(shù)解析式;

③根據(jù)第二問(wèn)將二次函數(shù)配平方,從而求最值.

解:(1)設(shè)解析式為y=kt+b,

將(1,198)、(80,40)代入,得:

解得:,

∴y=﹣2t+200(1≤t≤80,t為整數(shù));

(2)設(shè)日銷售利潤(rùn)為w,則w=(p﹣6)y,

當(dāng)1≤t≤40時(shí),w=(t+16﹣6)(﹣2t+200)=﹣t﹣302+2450

當(dāng)41≤t≤80時(shí),w=26(﹣2t+200)=﹣52t+5200

(3)①當(dāng)1≤t≤40時(shí),w=﹣t﹣302+2450

當(dāng)t=30時(shí),w最大=2450;

當(dāng)41≤t≤80時(shí),w=﹣52t+5200

當(dāng)t=41時(shí),w最大=3068,

∵3068>2450,

41天的日銷售利潤(rùn)最大,最大利潤(rùn)為3068元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC平分∠BCDABAD,AEBCEAFCDF.

(1)若∠ABE=60°,求∠CDA的度數(shù);

(2)AE=2,BE=1,CD=4.求四邊形AECD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高爾夫運(yùn)動(dòng)員將一個(gè)小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度hm)與它的飛行時(shí)間(s)滿足二次函數(shù)關(guān)系,th的幾組對(duì)應(yīng)值如下表所示:

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

1)求ht之間的函數(shù)關(guān)系式(不要求寫t的取值范圍);

2)求小球飛行3s時(shí)的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一個(gè)等腰直角三角形沿斜邊上的高剪下,與剩下部分能拼成一個(gè)平行四邊形,如圖(1).

1)想一想,判斷四邊形是平行四邊形的依據(jù)是_____________________________________.(用平行四邊形的判定方法敘述)

2)按上述方法做一做,請(qǐng)你拼一個(gè)與圖(1)位置或形狀不同的平行四邊形。并在圖(2)中面出示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,則水面下降1m時(shí),水面寬度增加_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的情景對(duì)話,然后解答問(wèn)題:

老師:我們定義一種三角形,兩邊的平方和等于第三邊平方的2倍的三角形叫做奇異三角形.

小華:等邊三角形一定是奇異三角形!

小明:那直角三角形中是否存在奇異三角形呢?

問(wèn)題(1):根據(jù)奇異三角形的定義,請(qǐng)你判斷小華提出的猜想:等邊三角形一定是奇異三角形是否正確?___________

問(wèn)題(2):已知中,兩邊長(zhǎng)分別是5,,若這個(gè)三角形是奇異三角形,則第三邊長(zhǎng)是_____________;

問(wèn)題(3):如圖,以為斜邊分別在的兩側(cè)作直角三角形,且,若四邊形內(nèi)存在點(diǎn),使得,.試說(shuō)明:是奇異三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過(guò)A(4,4),B(2,m)兩點(diǎn),點(diǎn)B到拋物線對(duì)稱軸的距離記為d,滿足0<d≤1,則實(shí)數(shù)m的取值范圍是( 。

A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+ca≠0)經(jīng)過(guò)C2,0),D0,﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過(guò)點(diǎn)E0﹣2)且平行于x軸,過(guò)AB兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N

1)求此拋物線的解析式;

2)求證:AO=AM;

3)探究:

當(dāng)k=0時(shí),直線y=kxx軸重合,求出此時(shí)的值;

試說(shuō)明無(wú)論k取何值,的值都等于同一個(gè)常數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D,E分別在AB,BC上,∠EAD=∠EDA,點(diǎn)F為DE的延長(zhǎng)線與AC的延長(zhǎng)線的交點(diǎn).

(1)求證:DE=EF;

(2)判斷BD和CF的數(shù)量關(guān)系,并說(shuō)明理由;

(3)若AB=3,AE=,求BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案