【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點分別為D、E、F,∠A=80°,點P為⊙O上任意一點(不與E、F重合),則∠EPF= .
【答案】50°或130°
【解析】解:有兩種情況: ①當(dāng)P在弧EDF上時,∠EPF=∠ENF,
連接OE、OF,
∵圓O是△ABC的內(nèi)切圓,
∴OE⊥AB,OF⊥AC,
∴∠AEO=∠AFO=90°,
∵∠A=80°,
∴∠EOF=360°﹣∠AEO﹣∠AFO﹣∠A=100°,
∴∠ENF=∠EPF= ∠EOF=50°,
②當(dāng)P在弧EMF上時,∠EPF=∠EMF,
∠FPE=∠FME=180°﹣50°=130°,
所以答案是:50°或130°.
【考點精析】本題主要考查了垂線的性質(zhì)和多邊形內(nèi)角與外角的相關(guān)知識點,需要掌握垂線的性質(zhì):1、過一點有且只有一條直線與己知直線垂直.2、垂線段最短;多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點O.M為AD中點,連接CM交BD于點N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABNM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值,
(1)2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.
(2)已知a+b=4,ab=﹣2,求代數(shù)式(4a﹣3b﹣2ab)﹣(a﹣6b﹣ab)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題呈現(xiàn):如圖1,點E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA上,AE=DG,求證:2S四邊形EFGH=S矩形ABCD.(S表示面積)
實驗探究:某數(shù)學(xué)實驗小組發(fā)現(xiàn):若圖1中AH≠BF,點G在CD上移動時,上述結(jié)論會發(fā)生變化,分別過點E、G作BC邊的平行線,再分別過點F、H作AB邊的平行線,四條平行線分別相交于點A1、B1、C1、D1,得到矩形A1B1C1D1.
如圖2,當(dāng)AH>BF時,若將點G向點C靠近(DG>AE),經(jīng)過探索,發(fā)現(xiàn):2S四邊形EFGH=S矩形ABCD+.
如圖3,當(dāng)AH>BF時,若將點G向點D靠近(DG<AE),請?zhí)剿?/span>S四邊形EFGH、S矩形ABCD與之間的數(shù)量關(guān)系,并說明理由.
遷移應(yīng)用:
請直接應(yīng)用“實驗探究”中發(fā)現(xiàn)的結(jié)論解答下列問題:
如圖4,點E、F、G、H分別是面積為25的正方形ABCD各邊上的點,已知AH>BF,AE>DG,S四邊形EFGH=11,HF=,求EG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF. 若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,B在x軸上,四邊形OACB為平行四邊形,且
∠AOB=60°,反比例函數(shù) (k>0)在第一象限內(nèi)過點A,且與BC交于點F。當(dāng)F為BC的中點,且S△AOF=12 時,OA的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點A(﹣2,0),點B(0,﹣4),AD與y軸交于點E,且E為AD的中點,雙曲線y= 經(jīng)過C,D兩點且D(a,8)、C(4,b).
(1)求a、b、k的值;
(2)如圖2,點P在雙曲線y= 上,點Q在x軸上,若以A、B、P、Q為頂點的四邊形為平行四邊形,試直接寫出滿足要求的所有點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將斜邊長為4的直角三角板放在直角坐標(biāo)系xOy中,兩條直角邊分別與坐標(biāo)軸重合,P為斜邊的中點.現(xiàn)將此三角板繞點O順時針旋轉(zhuǎn)120°后點P的對應(yīng)點的坐標(biāo)是( )
A.( ,1)
B.(1,﹣ )
C.(2 ,﹣2)
D.(2,﹣2 )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com