【題目】如圖,曲線BC是反比例函數(shù)y4≤x≤6)的一部分,其中B4,1m),C6,﹣m),拋物線y=﹣x2+2bx的頂點(diǎn)記作A

1)求k的值.

2)判斷點(diǎn)A是否可與點(diǎn)B重合;

3)若拋物線與BC有交點(diǎn),求b的取值范圍.

【答案】(1)12;(2)點(diǎn)A不與點(diǎn)B重合;(3)

【解析】

1)把B、C兩點(diǎn)代入解析式,得到k41m)=(﹣m),求得m=﹣2,從而求得k的值;

2)由拋物線解析式得到頂點(diǎn)Ab,b2),如果點(diǎn)A與點(diǎn)B重合,則有b4,且b23,顯然不成立;

3)當(dāng)拋物線經(jīng)過點(diǎn)B4,3)時(shí),解得,b ,拋物線右半支經(jīng)過點(diǎn)B;當(dāng)拋物線經(jīng)過點(diǎn)C,解得,b,拋物線右半支經(jīng)過點(diǎn)C;從而求得b的取值范圍為b

解:(1)∵B4,1m),C6,﹣m)在反比例函數(shù) 的圖象上,

k41m)=(﹣m),

∴解得m=﹣2,

k4×[1﹣(﹣2]12;

2)∵m=﹣2,∴B4,3),

∵拋物線y=﹣x2+2bx=﹣(xb2+b2,

Ab,b2).

若點(diǎn)A與點(diǎn)B重合,則有b4,且b23,顯然不成立,

∴點(diǎn)A不與點(diǎn)B重合;

3)當(dāng)拋物線經(jīng)過點(diǎn)B4,3)時(shí),有3=﹣42+2b×4,

解得,b

顯然拋物線右半支經(jīng)過點(diǎn)B;

當(dāng)拋物線經(jīng)過點(diǎn)C62)時(shí),有2=﹣62+2b×6,

解得,b

這時(shí)仍然是拋物線右半支經(jīng)過點(diǎn)C,

b的取值范圍為b

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A,動(dòng)直線x=t(0<t<8)與反比例函數(shù)的圖象交于點(diǎn)M,與直線AB交于點(diǎn)N.

(1)求k的值;

(2)當(dāng)t=4時(shí),求△BMN面積;

(3)若MA⊥AB,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】射線QN與等邊ABC的兩邊AB,BC分別交于點(diǎn)M,N,且ACQNAM=MB=2cm,QM=4cm.動(dòng)點(diǎn)P從點(diǎn)Q出發(fā),沿射線QN以每秒1cm的速度向右移動(dòng),經(jīng)過t秒,以點(diǎn)P為圓心,cm為半徑的圓與ABC的邊相切(切點(diǎn)在邊上),請(qǐng)寫出t可取的一切值 (單位:秒)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P上一動(dòng)點(diǎn),連接AP,作∠APC=45°,交弦AB于點(diǎn)C.已知AB=6cm,設(shè)A,P兩點(diǎn)間的距離為xcm,PC兩點(diǎn)間的距離為y1cm,A,C兩點(diǎn)間的距離為y2cm.(當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),y1,y2的值為0;當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),y1的值為0y2的值為6).

小智根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小智的探究過程,請(qǐng)補(bǔ)充完整:

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了yx的幾組對(duì)應(yīng)值;

x/cm

0

1

2

3

4

5

6

y1/cm

0

1.21

2.09

m

2.99

2.82

0

y2/cm

0

0.87

1.57

2.20

2.83

3.61

6

經(jīng)測(cè)量m的值是 (保留一位小數(shù)).

2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y1)(x,y2),并畫出函數(shù)yspan>1,y2的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)△ACP為等腰三角形時(shí),AP的長(zhǎng)度約為 cm(保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:

小明的作法如下:

老師說:小明的作法正確.”

請(qǐng)回答:(1)點(diǎn)OABC外接圓圓心(即OA=OB=OC)的依據(jù)是____;

2)∠APB=ACB的依據(jù)是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)完成下面題目的證明.如圖,AB為⊙O的直徑,AB=8,點(diǎn)C和點(diǎn)D是⊙O上關(guān)于直線AB對(duì)稱的兩個(gè)點(diǎn),連接OC,AC,且∠BOC<90°,直線BC與直線AD相交于點(diǎn)E,過點(diǎn)C作直線CG與線段AB的延長(zhǎng)線相交于點(diǎn)F,與直線AD相交于點(diǎn)G,且∠GAF=∠GCE

(1)求證:直線CG為⊙O的切線;

(2)若點(diǎn)H為線段OB上一點(diǎn),連接CH,滿足CB=CH;

①求證:△CBH∽△OBC;

②求OH+HC的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi),C為線段AB外的一點(diǎn),若以AB,C為頂點(diǎn)的三角形為直角三角形,則稱C為線段AB的直角點(diǎn). 特別地,當(dāng)該三角形為等腰直角三角形時(shí),稱C為線段AB的等腰直角點(diǎn).

1)如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為,在點(diǎn)P1,P2,P3中,線段OM的直角點(diǎn)是 ;

2)在平面直角坐標(biāo)系xOy中,點(diǎn)AB的坐標(biāo)分別為,,直線l的解析式為

①如圖2,C是直線l上的一個(gè)動(dòng)點(diǎn),若C是線段AB的直角點(diǎn),求點(diǎn)C的坐標(biāo);

②如圖3P是直線l上的一個(gè)動(dòng)點(diǎn),將所有線段AP的等腰直角點(diǎn)稱為直線l關(guān)于點(diǎn)A的伴隨點(diǎn).若⊙O的半徑為r,且⊙O上恰有兩個(gè)點(diǎn)為直線l關(guān)于點(diǎn)A的伴隨點(diǎn),直接寫出r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是二次函數(shù)yax2+bx+c的部分x,y的對(duì)應(yīng)值:

x

1

0

1

2

3

y

m

1

2

1

2

1)二次函數(shù)圖象的開口向 ,頂點(diǎn)坐標(biāo)是 ,m的值為 ;

2)當(dāng)x0時(shí),y的取值范圍是

3)當(dāng)拋物線yax2+bx+c的頂點(diǎn)在直線yx+n的下方時(shí),n的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ykx2k4與拋物線yx 2

1)求證:直線與拋物線有兩個(gè)不同的交點(diǎn);

2)設(shè)直線與拋物線分別交于A, B兩點(diǎn).

①當(dāng)k=-時(shí),在直線AB下方的拋物線上求點(diǎn)P,使ABP的面積等于5;

②在拋物線上是否存在定點(diǎn)D使∠ADB90°,若存在,求點(diǎn)D到直線AB的最大距離. 若不存在,請(qǐng)你說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案