(2009•浦東新區(qū)二模)如圖,已知AB⊥MN,垂足為點(diǎn)B,P是射線BN上的一個(gè)動(dòng)點(diǎn),AC⊥AP,∠ACP=∠BAP,AB=4,BP=x,CP=y,點(diǎn)C到MN的距離為線段CD的長(zhǎng).
(1)求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,點(diǎn)C到MN的距離是否會(huì)發(fā)生變化?如果發(fā)生變化,請(qǐng)用x的代數(shù)式表示這段距離;如果不發(fā)生變化,請(qǐng)求出這段距離;
(3)如果圓C與直線MN相切,且與以BP為半徑的圓P也相切,求BP:PD的值.

【答案】分析:(1)求y關(guān)于x的函數(shù)解析式,可以證明△ABP∽△CAP,根據(jù)相似比得出;
(2)C到MN的距離,即CD的長(zhǎng),可以延長(zhǎng)CA交直線MN于點(diǎn)E,證明AB∥CD,由平行線的性質(zhì)得出;
(3)圓C與直線MN相切,且與以BP為半徑的圓P也相切,根據(jù)圓與圓的位置關(guān)系有(i)當(dāng)圓C與圓P外切時(shí),CP=PB+CD,即y=x+8,(ii)當(dāng)圓C與圓P內(nèi)切時(shí),CP=|PB-CD|,即y=|x-8|,結(jié)合(1),(2)求出BP:PD的值.
解答:解:(1)∵AB⊥MN,AC⊥AP,
∴∠ABP=∠CAP=90°.
又∵∠ACP=∠BAP,
∴△ABP∽△CAP.(1分)

.(1分)
∴所求的函數(shù)解析式為(x>0).(1分)

(2)CD的長(zhǎng)不會(huì)發(fā)生變化.(1分)
延長(zhǎng)CA交直線MN于點(diǎn)E.(1分)
∵AC⊥AP,
∴∠PAE=∠PAC=90°.
∵∠ACP=∠BAP,
∴∠APC=∠APE.
∴∠AEP=∠ACP.
∴PE=PC.
∴AE=AC.(1分)
∵AB⊥MN,CD⊥MN,
∴AB∥CD.
.(1分)
∵AB=4,
∴CD=8.(1分)

(3)∵圓C與直線MN相切,
∴圓C的半徑為8.(1分)
(i)當(dāng)圓C與圓P外切時(shí),CP=PB+CD,即y=x+8,
,
∴x=2,(1分)
∴BP=2,
∴CP=y=2+8=10,
根據(jù)勾股定理得PD=6
∴BP:PD=.(1分)
(ii)當(dāng)圓C與圓P內(nèi)切時(shí),CP=|PB-CD|,即y=|x-8|,


∴x=-2(不合題意,舍去)或無(wú)實(shí)數(shù)解.(1分)
∴綜上所述BP:PD=
點(diǎn)評(píng):本題難度較大,考查相似三角形的判定和性質(zhì).切線的性質(zhì)及圓與圓的位置關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•浦東新區(qū)二模)已知一次函數(shù)y=-x+m的圖象經(jīng)過(guò)點(diǎn)A(-2,3),并與x軸相交于點(diǎn)B,二次函數(shù)y=ax2+bx-2的圖象經(jīng)過(guò)點(diǎn)A和點(diǎn)B.
(1)分別求這兩個(gè)函數(shù)的解析式;
(2)如果將二次函數(shù)的圖象沿y軸的正方向平移,平移后的圖象與一次函數(shù)的圖象相交于點(diǎn)P,與y軸相交于點(diǎn)Q,當(dāng)PQ∥x軸時(shí),試問(wèn)二次函數(shù)的圖象平移了幾個(gè)單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•浦東新區(qū)二模)一根橫截面為圓形的下水管道的直徑為1米,管內(nèi)有少量的污水(如圖),此時(shí)的水面寬AB為0.6米.
(1)求此時(shí)的水深(即陰影部分的弓形高);
(2)當(dāng)水位上升到水面寬為0.8米時(shí),求水面上升的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•浦東新區(qū)二模)求不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2009•浦東新區(qū)二模)如果等腰三角形的腰長(zhǎng)為13厘米,底邊長(zhǎng)為10厘米,那么底角的余切值等于( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案