【題目】如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點(diǎn)B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無(wú)滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點(diǎn)B的落點(diǎn)依次為B1 , B2 , B3 , …,則B2017的坐標(biāo)為( )

A.(1345,0)
B.(1345.5,
C.(1345,
D.(1345.5,0)

【答案】B
【解析】解:連接AC,如圖所示.

∵四邊形OABC是菱形,

∴OA=AB=BC=OC.

∵∠ABC=60°,

∴△ABC是等邊三角形.

∴AC=AB.

∴AC=OA.

∵OA=1,

∴AC=1.

畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如圖所示.

由圖可知:每翻轉(zhuǎn)6次,圖形向右平移4.

∵2017=336×6+1,

∴點(diǎn)B1向右平移1344(即336×4)到點(diǎn)B2017

∵B1的坐標(biāo)為(1.5, ),

∴B2017的坐標(biāo)為(1.5+1344, ),

∴B2017的坐標(biāo)為(1345.5, ).

故答案為:(1345.5, ).

連接AC,根據(jù)條件可以求出AC,畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,容易發(fā)現(xiàn)規(guī)律:每翻轉(zhuǎn)6次,圖形向右平移4.由于2017=336×6+1,因此點(diǎn)B1向右平移1344(即336×4)即可到達(dá)點(diǎn)B2017,根據(jù)點(diǎn)B5的坐標(biāo)就可求出點(diǎn)B2017的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為(1, ),現(xiàn)將等腰直角三角板直角頂點(diǎn)放在原點(diǎn)O,一個(gè)銳角頂點(diǎn)A在此二次函數(shù)的圖象上,而另一個(gè)銳角頂點(diǎn)B在第二象限,且點(diǎn)A的坐標(biāo)為(2,1).

(1)求該二次函數(shù)的表達(dá)式;
(2)判斷點(diǎn)B是否在此二次函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明

如圖,點(diǎn)E在直線DF上,點(diǎn)B在直線AC上,若,

求證:

證明:

______對(duì)頂角相等

,

______

____________

,

____________

______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC、△ADE均為是頂角為42的等腰三角形,BCDE分別是底邊,圖中△_________與△___________,可以通過以點(diǎn)________為旋轉(zhuǎn)中心,旋轉(zhuǎn)角度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點(diǎn)P

(1)如果∠A=80°,求∠BPC的度數(shù);

(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點(diǎn)Q,試探索∠Q、∠A之間的數(shù)量關(guān)系.

(3)如圖③,延長(zhǎng)線段BPQC交于點(diǎn)E△BQE中,存在一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC∥BD,要使△ABC≌△BAD需再補(bǔ)充一個(gè)條件,下列條件中,不能選擇的是( )

A. BCAD B. AC=BD C. BC=AD D. C=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,點(diǎn)D是邊BC的中點(diǎn),點(diǎn)E是邊AB上的任意一點(diǎn)(點(diǎn)E不與點(diǎn)B重合),沿DE翻折△DBE使點(diǎn)B落在點(diǎn)F處,連接AF,則線段AF的長(zhǎng)取最小值時(shí),BF的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,ABC=60°,AB=4,AD=8,點(diǎn)E,F(xiàn)分別是邊BC,AD的中點(diǎn),點(diǎn)M是AE與BF的交點(diǎn),點(diǎn)N是CF與DE的交點(diǎn),則四邊形ENFM的周長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)MN,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是

ADBAC的平分線;②∠ADC=60°點(diǎn)DAB的中垂線上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

同步練習(xí)冊(cè)答案