如圖,菱形ABCD中,∠BAD=60°,M是AB的中點(diǎn),P是對角線AC上的一個(gè)動點(diǎn),若PM+PB的最小值是3,則AB長為______.
連接PD,BD,
∵PB=PD,
∴PM+PB=PM+PD,
連接MD,交AC的點(diǎn)就是P點(diǎn),根據(jù)兩點(diǎn)間直線最短,
∴這個(gè)P點(diǎn)就是要的P點(diǎn),
又∵∠BAD=60°,AB=AD,
∴△ABD是等邊三角形,
∵M(jìn)為AB的中點(diǎn),
∴MD⊥AB,
∵M(jìn)D=3,
∴AD=MD÷sin60°=3÷
3
2
=2
3
,
∴AB=2
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖形中,既是中心對稱圖形又是軸對稱圖形的是( 。
A.等邊三角形B.平行四邊形C.拋物線D.雙曲線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)畫圖探究:
如圖1,若點(diǎn)A、B在直線m同側(cè),在直線m上求作一點(diǎn)P,使AP+BP的值最小,保留作圖痕跡,不寫作法;
(2)實(shí)踐運(yùn)用:
如圖2,在等邊△ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,點(diǎn)P是高AD上一個(gè)動點(diǎn),求BP+PE的最小值
(3)拓展延伸:
如圖3,四邊形ABCD中,∠BAD=125°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長最小,并求此時(shí)∠MAN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖形中是軸對稱圖形的是( 。
A.①②B.③④C.②③D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P為∠AOB內(nèi)的一點(diǎn),分別作出點(diǎn)P關(guān)于OA、OB的對稱點(diǎn)P1、P2,連結(jié)P1、P2,交OA于M,交OB于N,若P1P2=13cm,求△MNP的周長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

動手操作:在矩形紙片ABCD中,AB=3,AD=5.如圖所示,折疊紙片,使點(diǎn)A落在BC邊上的A′處,折痕為PQ,當(dāng)點(diǎn)A′在BC邊上移動時(shí),折痕的端點(diǎn)P、Q也隨之移動.若限定點(diǎn)P、Q分別在AB、AD邊上移動,則點(diǎn)A′在BC邊上可移動的最大距離為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折疊,使AB落在AC上,點(diǎn)B與AC上的點(diǎn)E重合,展開后,折痕AD交BO于點(diǎn)F,連接DE、EF.下列結(jié)論:①tan∠ADB=2;②圖中有4對全等三角形;③若將△DEF沿EF折疊,則點(diǎn)D不一定落在AC上;④BD=BF;⑤S四邊形DFOE=S△AOF,上述結(jié)論中正確的是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下圖是軸對稱圖形的( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將矩形ABCD沿CE折疊,使點(diǎn)B恰好落在對角線AC上的點(diǎn)B′處,已知AB=4,BC=3.
(1)求AB′及AE的長.
(2)求△AEC的面積.

查看答案和解析>>

同步練習(xí)冊答案