(2013•朝陽區(qū)二模)如圖,在△ABC中,DE∥BC,如果AD=3,BD=5,那么
DE
BC
的值是(  )
分析:先根據(jù)題意判斷出△ADE∽△ABC,再由相似三角形的對(duì)應(yīng)邊成比例即可得出結(jié)論.
解答:解:∵在△ABC中,DE∥BC,
AD
AB
=
DE
BC
,
AD
AD+BD
=
DE
BC

∵AD=3,BD=5,
3
3+5
=
DE
BC
,即
DE
BC
=
3
8

故選C.
點(diǎn)評(píng):本題考查的是相似三角形的判定與性質(zhì),熟知相似三角形的對(duì)應(yīng)邊成比例是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)二模)分解因式:2x3-4x2+2x=
2x(x-1)2
2x(x-1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)二模)如圖,下列水平放置的幾何體中,左視圖不是長方形的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•朝陽區(qū)二模)閱讀下列材料:
小華遇到這樣一個(gè)問題,如圖1,△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC內(nèi)部有一點(diǎn)P,連接PA、PB、PC,求PA+PB+PC的最小值.
小華是這樣思考的:要解決這個(gè)問題,首先應(yīng)想辦法將這三條端點(diǎn)重合于一點(diǎn)的線段分離,然后再將它們連接成一條折線,并讓折線的兩個(gè)端點(diǎn)為定點(diǎn),這樣依據(jù)“兩點(diǎn)之間,線段最短”,就可以求出這三條線段和的最小值了.他先后嘗試了翻折、旋轉(zhuǎn)、平移的方法,發(fā)現(xiàn)通過旋轉(zhuǎn)可以解決這個(gè)問題.他的做法是,如圖2,將△APC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到△EDC,連接PD、BE,則BE的長即為所求.
(1)請(qǐng)你寫出圖2中,PA+PB+PC的最小值為
61
61
;
(2)參考小華的思考問題的方法,解決下列問題:
①如圖3,菱形ABCD中,∠ABC=60°,在菱形ABCD內(nèi)部有一點(diǎn)P,請(qǐng)?jiān)趫D3中畫出并指明長度等于PA+PB+PC最小值的線段(保留畫圖痕跡,畫出一條即可);②若①中菱形ABCD的邊長為4,請(qǐng)直接寫出當(dāng)PA+PB+PC值最小時(shí)PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)二模)我國質(zhì)檢總局規(guī)定,針織內(nèi)衣等直接接觸皮膚的制品,每千克的衣物上甲醛含量應(yīng)在0.000075千克以下.將0.000075用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)二模)從分別標(biāo)有1到9數(shù)字的9張卡片中任意抽取一張,抽到所標(biāo)數(shù)字是3的倍數(shù)的概率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案