【題目】如圖所示,二次函數(shù)的圖象與一次函數(shù)的圖象交于A、B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),直線AB分別交x軸、y軸于C、D兩點(diǎn),且k0

1)求A,B兩點(diǎn)橫坐標(biāo);

2)若△OAB是以OA為腰的等腰三角形,求k的值.

【答案】1A點(diǎn)橫坐標(biāo)是1B點(diǎn)橫坐標(biāo)2;(2

【解析】

1)聯(lián)立二次函數(shù)和一次函數(shù)解析式,可求出x的值,即可得AB兩點(diǎn)的橫坐標(biāo);

2)根據(jù)AB兩點(diǎn)橫坐標(biāo)可得,,利用兩點(diǎn)間距離公式可求出OA的長(zhǎng),可用k表示OB、AB的長(zhǎng),分OA=AB、OA=OB兩種情況分別求出k的值即可.

1)∵A、B的交點(diǎn),

,

,

k0,

,

點(diǎn)在點(diǎn)的右側(cè),

A點(diǎn)橫坐標(biāo)是1,B點(diǎn)橫坐標(biāo)2

2)∵A點(diǎn)橫坐標(biāo)是1,B點(diǎn)橫坐標(biāo)2

,

,,

,

∴由兩點(diǎn)間距離公式可得:

∵△OAB是以為腰的等腰三角形,

∴分為兩種情況:,

①當(dāng)時(shí),即

,

②當(dāng)時(shí),即

綜上所述,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】良好的坐姿習(xí)慣有利于青少年骨骼生長(zhǎng),有利于身體健康,那么首先要有正確的寫(xiě)字坐姿,身體上半部坐直,頭部端正、目視前方,兩手放在桌面上,兩腿平放,胸膛挺起,理想狀態(tài)下,如圖①,將圖①中的眼睛記為點(diǎn),腹部記為點(diǎn),筆尖記為點(diǎn),且與桌面沿的交點(diǎn)記為點(diǎn),已知,點(diǎn)的距離為23cm,

1)求的度數(shù)

2)老師發(fā)現(xiàn)小亮同學(xué)寫(xiě)字姿勢(shì)不正確,眼睛傾斜到圖2的點(diǎn),點(diǎn)恰好在的垂直平分線上,且,于是要求其糾正為正確的姿勢(shì),求眼睛所在的位置上升的距離(結(jié)果精確到1cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,點(diǎn)上,作,直線,交延長(zhǎng)線于,連接,,則的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△AOB與△A1OB1是以點(diǎn)O為位似中心的位似圖形,且相似比為12,點(diǎn)B的坐標(biāo)為(-1,2),則點(diǎn)B1的坐標(biāo)為(

A.2,-4B.1,-4C.-1,4D.-4,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖①,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向勻速平移得到△PNM,速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速移動(dòng),速度為1cm/s,當(dāng)△PNM停止平移時(shí),點(diǎn)Q也停止移動(dòng),如圖②,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4),連接PQ,MQ,MC,解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),PQ∥MN?

(2)設(shè)△QMC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;

(3)是否存在某一時(shí)刻t,使S△QMC:S四邊形ABQP=1:4?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

(4)是否存在某一時(shí)刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線交軸于,交軸于

1)求拋物線解析式;

2)點(diǎn)在第一象限的拋物線上,的面積比為,求點(diǎn)的坐標(biāo);

3)在(2)的條件下,在點(diǎn)之間的拋物線上取點(diǎn),,軸于、交延長(zhǎng)線于,當(dāng)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若邊長(zhǎng)為6的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得正方形ABCD′,記旋轉(zhuǎn)角為a

I)如圖1,當(dāng)a60°時(shí),求點(diǎn)C經(jīng)過(guò)的弧的長(zhǎng)度和線段AC掃過(guò)的扇形面積;

(Ⅱ)如圖2,當(dāng)a45°時(shí),BCDC′的交點(diǎn)為E,求線段DE的長(zhǎng)度;

(Ⅲ)如圖3,在旋轉(zhuǎn)過(guò)程中,若F為線段CB′的中點(diǎn),求線段DF長(zhǎng)度的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1637年笛卡兒(RDescartes1596-1650)在其《幾何學(xué)》中,首次應(yīng)用待定系數(shù)法最早給出因式分解定理.關(guān)于笛卡爾的“待定系數(shù)法”原理,舉例說(shuō)明如下:

分解因式:.觀察知,顯然時(shí),原式,因此原式可分解為與另一個(gè)整式的積.令:,而,因等式兩邊同次冪的系數(shù)相等,則有:,得,從而

根據(jù)以上材料,理解并運(yùn)用材料提供的方法,解答以下問(wèn)題:

1)若是多項(xiàng)式的因式,求的值并將多項(xiàng)式分解因式.

2)若多項(xiàng)式含有因式,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(﹣2,3),點(diǎn)B的坐標(biāo)為(4n).

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)在x軸上是否存在點(diǎn)P,使△APC是直角三角形?若存,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案