【題目】如圖,矩形AEHC是由三個全等矩形拼成的,AH與BE、BF、DF、DG、CG分別交于點P、Q、K、M、N,設△BPQ、△DKM、△CNH的面積依次為、、.
(1)求證:△BPQ∽△DKM∽△CNH;
(2)若,求的值.
【答案】(1)詳見解析;(2)16
【解析】
(1)利用矩形的性質,平行四邊形的判定與性質,和相似三角形的判定定理進行推理即可;
(2)由條件可以得出△ABP∽△ADK∽△ACN,可以求出△ABP與△ADK的相似比為 ,△ADK與△ACN相似比為,由相似三角形的性質,就可以求出K,從而可以求出S2.
(1)證明:∵矩形AEFB、BFGD、DGHC互相全等,
∴BD=DC=EF=FG,且BD∥EF,DC∥FG,
∴四邊形BEFD,DFGC為平行四邊形,
∴BE∥DF∥CG,
∴∠BPQ=∠DKM=∠CNH,
∵BF∥DG∥CH,
∴∠BQP=∠DMK=∠CHN,
∴△BQP∽△DMK∽△CHN.
(2)∵BP∥DK∥CN,
∴△ABP∽△ADK∽△ACN,
∴,,
由(1)知:△BQP∽△DMK∽△CHN,
∴,,
∴,
設,則,,
∵,∴,
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,雙曲線y=與直線y=x交于A、B兩點,點P(a,b)在雙曲線y=上,且0<a<4.
(1)設PB交x軸于點E,若a=1,求點E的坐標;
(2)連接PA、PB,得到△ABP,若4a=b,求△ABP的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種高檔蔬菜“莼菜”,其進價為16元/kg.經(jīng)市場調查發(fā)現(xiàn):該商品的日銷售量y(kg)是售價x(元/kg)的一次函數(shù),其售價、日銷售量對應值如表:
售價(元/) | 20 | 30 | 40 |
日銷售量() | 80 | 60 | 40 |
(1)求關于的函數(shù)解析式(不要求寫出自變量的取值范圍);
(2)為多少時,當天的銷售利潤 (元)最大?最大利潤為多少?
(3)由于產(chǎn)量日漸減少,該商品進價提高了元/,物價部門規(guī)定該商品售價不得超過36元/,該商店在今后的銷售中,日銷售量與售價仍然滿足(1)中的函數(shù)關系.若日銷售最大利潤是864元,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,DH⊥BC于H交BE于G.下列結論:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正確的個數(shù)是( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖1,拋物線y=ax2+bx﹣3與x軸交于A(﹣2,0),B(4,0)兩點,與y軸交于點C.
(1)求拋物線的表達式;
(2)點N是拋物線上異于點C的動點,若△NAB的面積與△CAB的面積相等,求出點N的坐標;
(3)如圖2,當P為OB的中點時,過點P作PD⊥x軸,交拋物線于點D.連接BD,將△PBD沿x軸向左平移m個單位長度(0<m≤2),將平移過程中△PBD與△OBC重疊部分的面積記為S,求S與m的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:
如圖(a),點A、B在直線l的同側,要在直線l上找一點C,使AC與BC的距離之和最小,我們可以作出點B關于l的對稱點B′,連接A B′與直線l交于點C,則點C即為所求.
(1)實踐運用:
如圖(b),已知,⊙O的直徑CD為4,點A 在⊙O 上,∠ACD=30°,B 為弧AD 的中點,P為直徑CD上一動點,則BP+AP的最小值為 .
(2)知識拓展:
如圖(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分線交BC于點D,E、F分別是線段AD和AB上的動點,求BE+EF的最小值,并寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)8a+7b+2c>0;(3)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(4)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結論有().
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:將一個大于0的自然數(shù),去掉其個位數(shù)字,再把剩下的數(shù)加上原數(shù)個位數(shù)字的4倍,如果得到的和能被13整除,則稱這個數(shù)是“一刀兩斷”數(shù),如果和太大無法直接觀察出來,就再次重復這個過程繼續(xù)計算,例如,所以55263是“一刀兩斷”數(shù).,所以3247不是“一刀兩斷”數(shù).
(1)判斷5928是否為“一刀兩斷”數(shù):_____(填是或否),并證明任意一個能被13整除的數(shù)是“一刀兩斷”數(shù);
(2)對于一個“一刀兩斷”數(shù)均為正整數(shù)),規(guī)定.若的千位數(shù)字滿是,千位數(shù)字與十位數(shù)字相同,且能被65整除,求出所有滿足條件的四位數(shù)中,的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com