【題目】在等邊△ABC中,以BC為直徑的⊙O與AB交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:DE為⊙O的切線;
(2)計(jì)算.
【答案】(1)證明見解析;(2)=3.
【解析】試題分析:(1)連接OD,根據(jù)等邊三角形性質(zhì)得出∠B=∠A=60°,求出等邊三角形BDO,求出∠BDO,∠A,推出OD∥AC,推出OD⊥DE,根據(jù)切線的判定推出即可;
(2)求出AD=AC,求出AE=AC,CE=AC,即可求出答案.
(1)連接OD,
∵△ABC為等邊三角形,
∴∠ABC=60°,
又∵OD=OB,
∴△OBD為等邊三角形,
∴∠BOD=60°=∠ACB,
∴OD∥AC,
又∵DE⊥AC,
∴∠ODE=∠AED=90°,
∴DE為⊙O的切線;
(2)連接CD,
∵BC為⊙O的直徑,
∴∠BDC=90°,
又∵△ABC為等邊三角形,
∴AD=BD=AB,
在Rt△AED中,∠A=60°,
∴∠ADE=30°,
∴AE=AD=AC,CE=AC-AE=AC,
∴=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為B(4,0),另一個(gè)交點(diǎn)為A,且與y軸相交于C點(diǎn).
(1)求m的值及C點(diǎn)坐標(biāo);
(2)在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)M點(diǎn)坐標(biāo);若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由;
(3)P為拋物線上一點(diǎn),它關(guān)于直線BC的對(duì)稱點(diǎn)為Q.
①當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo);
②點(diǎn)P的橫坐標(biāo)為t(0<t<4),當(dāng)t為何值時(shí),四邊形PBQC的面積最大,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,放在平面直角坐標(biāo)系中的正方形ABCD的邊長(zhǎng)為4,現(xiàn)做如下實(shí)驗(yàn):拋擲一枚均勻的正四面體骰子(如圖,它有四個(gè)頂點(diǎn),各頂點(diǎn)數(shù)分別是1、2、3、4),每個(gè)頂點(diǎn)朝上的機(jī)會(huì)是相同的,連續(xù)拋擲兩次,將骰子朝上的點(diǎn)數(shù)作為直角坐標(biāo)系中點(diǎn)P的坐標(biāo)(第一次的點(diǎn)數(shù)為橫坐標(biāo),第二次的點(diǎn)數(shù)為縱坐標(biāo)).
(1)求點(diǎn)P落在正方形面上(含邊界,下同)的概率;
(2)將正方形ABCD平移數(shù)個(gè)單位,是否存在一種平移,使點(diǎn)P落在正方形面上的概率為?若存在,指出其中的一種平移方式;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小穎用的簽字筆可在甲、乙兩個(gè)商店買到.已知兩個(gè)商店的標(biāo)價(jià)都是每支簽字筆2元.但甲商店的優(yōu)惠條件是:購(gòu)買10支以上,從第11支開始按標(biāo)價(jià)的7折賣;乙商店的優(yōu)惠條件是:從第1支開始就按標(biāo)價(jià)的8.5折賣.
(1)小穎要買20支簽字筆,到哪個(gè)商店購(gòu)買較省錢?
(2)小穎現(xiàn)有40元,最多可買多少支簽字筆?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線y=x2+2x﹣3與x軸相交于A,B兩點(diǎn),與y軸交于點(diǎn)C,D為頂點(diǎn).
(1)求直線AC的解析式和頂點(diǎn)D的坐標(biāo);
(2)已知E(0, ),點(diǎn)P是直線AC下方的拋物線上一動(dòng)點(diǎn),作PR⊥AC于點(diǎn)R,當(dāng)PR最大時(shí),有一條長(zhǎng)為的線段MN(點(diǎn)M在點(diǎn)N的左側(cè))在直線BE上移動(dòng),首尾順次連接A、M、N、P構(gòu)成四邊形AMNP,請(qǐng)求出四邊形AMNP的周長(zhǎng)最小時(shí)點(diǎn)N的坐標(biāo);
(3)如圖2,過(guò)點(diǎn)D作DF∥y軸交直線AC于點(diǎn)F,連接AD,Q點(diǎn)是線段AD上一動(dòng)點(diǎn),將△DFQ沿直線FQ折疊至△D1FQ,是否存在點(diǎn)Q使得△D1FQ與△AFQ重疊部分的圖形是直角三角形?若存在,請(qǐng)求出AQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD、CEFG都是正方形,點(diǎn)G在線段CD上,GD=2CG,連接BG、DE,DE和FG相交于點(diǎn)O.下列結(jié)論:①△BCG≌△DCE;②BG⊥DE;③=;④4S△EFO=S△DGO.其中正確的結(jié)論有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)開展“英語(yǔ)演講”比賽活動(dòng),八年級(jí)(1),(2)班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)(滿分為100分)如圖所示,
(1)根據(jù)圖示填寫下表:
班級(jí) | 平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) |
八(1) | ______ | 85 | ______ |
八(2) | 85 | ______ | 100 |
(2)計(jì)算兩班復(fù)賽成績(jī)的方差并說(shuō)明哪版的成績(jī)比較穩(wěn)定.(方差公式:S2=])
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一根 24cm 的筷子,置于底面直徑為 15cm,高 8cm 的裝滿水的無(wú)蓋圓柱形水杯中,設(shè)筷子浸沒(méi)在杯子里面的長(zhǎng)度為 hcm,則 h 的取值范圍是( )
A.h≤15cmB.h≥8cmC.8cm≤h≤17cmD.7cm≤h≤16cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線,∠C=45°,sin B=,AD=1.
(1)求BC的長(zhǎng);
(2)求tan ∠DAE的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com