【題目】如圖,在ABCD中,AE、BF分別平分∠DAB和∠ABC,交CD于點E、F,AE、BF相交于點M.
(1)試說明:AE⊥BF;
(2)判斷線段DF與CE的大小關(guān)系,并予以說明.
【答案】
(1)解:方法一:如圖①,
∵在ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°.
∵AE、BF分別平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF.
∴2∠BAE+2∠ABF=180°.
即∠BAE+∠ABF=90°.
∴∠AMB=90°.
∴AE⊥BF.
方法二:如圖②,延長BC、AE相交于點P,
∵在ABCD中,AD∥BC,
∴∠DAP=∠APB.
∵AE平分∠DAB,
∴∠DAP=∠PAB.
∴∠APB=∠PAB.
∴AB=BP.
∵BF平分∠ABP,
∴AP⊥BF,
即AE⊥BF
(2)解:方法一:線段DF與CE是相等關(guān)系,即DF=CE,
∵在ABCD中,CD∥AB,
∴∠DEA=∠EAB.
又∵AE平分∠DAB,
∴∠DAE=∠EAB.
∴∠DEA=∠DAE.
∴DE=AD.
同理可得,CF=BC.
又∵在ABCD中,AD=BC,
∴DE=CF.
∴DE﹣EF=CF﹣EF.
即DF=CE.
方法二:如圖,延長BC、AE設(shè)交于點P,延長AD、BF相交于點O,
∵在ABCD中,AD∥BC,
∴∠DAP=∠APB.
∵AE平分∠DAB,
∴∠DAP=∠PAB.
∴∠APB=∠PAB.
∴BP=AB.
同理可得,AO=AB.
∴AO=BP.
∵在ABCD中,AD=BC,
∴OD=PC.
又∵在ABCD中,DC∥AB,
∴△ODF∽△OAB,△PCE∽△PBA.
∴ = , = .
∴DF=CE.
【解析】(1)因為AE,BF分別是∠DAB,∠ABC的角平分線,那么就有∠MAB= ∠DAB,∠MBA= ∠ABC,而∠DAB與∠ABC是同旁內(nèi)角互補,所以,能得到∠MAB+∠MBA=90°,即得證.(2)兩條線段相等.利用平行四邊形的對邊平行,以及角平分線的性質(zhì),可以得到△ADE和△BCF都是等腰三角形,那么就有CF=BC=AD=DE,再利用等量減等量差相等,可證.
【考點精析】認真審題,首先需要了解角平分線的性質(zhì)定理(定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上),還要掌握平行四邊形的性質(zhì)(平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,∠DAB=60°,點E,F(xiàn)分別在CD,AB的延長線上,且AE=AD,CF=CB.
(1)求證:四邊形AFCE是平行四邊形;
(2)若去掉已知條件“∠DAB=∠60°”,(1)中的結(jié)論還成立嗎?若成立,請寫出證明過程;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點在相互平行的三條直線l1 , l2 , l3上,且l1 , l2之間的距離為2,l2 , l3之間的距離為3,則AC的長是( )
A.
B.
C.
D.7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于D,DE⊥AB于E,EF∥AC于F。
(1)求證:△EDF∽△ADE;
(2)猜想:線段DC、DF、DA之間存在什么關(guān)系?并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四邊形是正方形,動點從點出發(fā),以cm/s的速度沿邊、、勻速運動到終止;動點從出發(fā),以cm/s的速度沿邊勻速運動到終止,若、兩點同時出發(fā),運動時間為s,△的面積為cm2. 與之間函數(shù)關(guān)系的圖像如圖所示.
(1)求圖中線段所表示的函數(shù)關(guān)系式;
(2)當動點在邊運動的過程中,若以、、為頂點的三角形是等腰三角形,求的值;
(3)是否存在這樣的,使將正方形的面積恰好分成的兩部分?若存在,求出這樣的的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水庫大壩截面的迎水坡坡比(DE與AE的長度之比)為1:0.6,背水坡坡比為1:2,大壩高DE=30米,壩頂寬CD=10米,求大壩的截面的周長和面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著某市養(yǎng)老機構(gòu)(養(yǎng)老機構(gòu)指社會福利院、養(yǎng)老院、社區(qū)養(yǎng)老中心等)建設(shè)穩(wěn)步推進,擁有的養(yǎng)老床位不斷增加.
(1)該市的養(yǎng)老床位數(shù)從年底的萬個增長到年底的萬個,求該市這兩年(從年底到年底)擁有的養(yǎng)老床位數(shù)的平均年增長率;
(2)若該市某社區(qū)今年準備新建一養(yǎng)老中心,其中規(guī)劃建造三類養(yǎng)老專用房間共間,這三類養(yǎng)老專用房間分別為單人間(個養(yǎng)老床位),雙人間(個養(yǎng)老床位),三人間(個養(yǎng)老床位),因?qū)嶋H需要,單人間房間數(shù)在至之間(包括和),且雙人間的房間數(shù)是單人間的倍,設(shè)規(guī)劃建造單人間的房間數(shù)為.
①若該養(yǎng)老中心建成后可提供養(yǎng)老床位個,求的值;
②求該養(yǎng)老中心建成后最多提供養(yǎng)老床位多少個?最少提供養(yǎng)老床位多少個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com