【題目】已知拋物線(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(4,0).
(1)求拋物線的函數(shù)解析式;
(2)如圖①,將拋物線沿x軸翻折得到拋物線,拋物線與y軸交于點(diǎn)C,點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)D作DE∥y軸交拋物線于點(diǎn)E,求線段DE的長(zhǎng)度的最大值;
(3)在(2)的條件下,當(dāng)線段DE處于長(zhǎng)度最大值位置時(shí),作線段BC的垂直平分線交DE于點(diǎn)F,垂足為H,點(diǎn)P是拋物線上一動(dòng)點(diǎn),⊙P與直線BC相切,且S⊙P:S△DFH=2π,求滿足條件的所有點(diǎn)P的坐標(biāo).
【答案】(1);(2)9;(3)(,﹣),(,),(,),(,).
【解析】
(1)將點(diǎn)A(﹣1,0)和點(diǎn)B(4,0)代入即可得到結(jié)論;
(2)由對(duì)稱性可知,得到拋物線y2的函數(shù)解析式為,求得直線BC的解析式為:y=﹣x+4,設(shè)D(m,﹣m+4),E(m,),其中0≤m≤4,得到DE=﹣m+4﹣()=,即可得到結(jié)論;
(3)由題意得到△BOC是等腰直角三角形,求得線段BC的垂直平分線為y=x,由(2)知,直線DE的解析式為x=1,得到H(2,2),根據(jù)S⊙P:S△DFH=2π,得到r=,由于⊙P與直線BC相切,推出點(diǎn)P在與直線BC平行且距離為的直線上,于是列方程即可得到結(jié)論.
解:(1)將點(diǎn)A(﹣1,0)和點(diǎn)B(4,0)代入得:
解得,
∴拋物線y1的函數(shù)解析式為:;
(2)由對(duì)稱性可知,拋物線y2的函數(shù)解析式為:,
∴C(0,4),
設(shè)直線BC的解析式為:y=kx+q,
把B(4,0),C(0,4)代入得,k=﹣1,q=4,
∴直線BC的解析式為:y=﹣x+4,設(shè)D(m,﹣m+4),E(m,),其中0≤m≤4,
∴DE=﹣m+4﹣()=,
∵0≤m≤4,
∴當(dāng)m=1時(shí),DEmax=9;
此時(shí),D(1,3),E(1,﹣6);
(3)由題意可知,△BOC是等腰直角三角形,
∴線段BC的垂直平分線為:y=x,由(2)知,直線DE的解析式為:x=1,
∴F(1,1),
∵H是BC的中點(diǎn),
∴H(2,2),
∴DH=,FH=,
∴S△DFH=1,設(shè)⊙P的半徑為r,
∵S⊙P:S△DFH=2π,
∴r=,
∵⊙P與直線BC相切,
∴點(diǎn)P在與直線BC平行且距離為的直線上,
∴點(diǎn)P在直線y=﹣x+2或y=﹣x+6的直線上,
∵點(diǎn)P在拋物線上,
∴,
解得:x1=,x2=,
,
解得:x3=,x4=,
∴符合條件的點(diǎn)P坐標(biāo)有4個(gè),分別是(,﹣),(,),(,),(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄂北公司以10元/千克的價(jià)格收購(gòu)一批產(chǎn)品進(jìn)行銷售,為了得到日銷售量y(千克)與銷售價(jià)格x(元/千克)之間的關(guān)系,經(jīng)過(guò)市場(chǎng)調(diào)查獲得部分?jǐn)?shù)據(jù)如表:
銷售價(jià)格x(元/千克) | 10 | 15 | 20 | 25 | 30 |
日銷售量y(千克) | 300 | 225 | 150 | 75 | 0 |
(1)請(qǐng)你根據(jù)表中的數(shù)據(jù)確定y與x之間的函數(shù)表達(dá)式;
(2)鄂北公司應(yīng)該如何確定這批產(chǎn)品的銷售價(jià)格,才能使日銷售利潤(rùn)W1元最大?
(3)若鄂北公司每銷售1千克這種產(chǎn)品需支出a元(a>0)的相關(guān)費(fèi)用,當(dāng)20≤x≤25時(shí),鄂北公司的日獲利W2元的最大值為1215元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知在平面直角坐標(biāo)系中,點(diǎn)、、分別為坐標(biāo)軸上的三個(gè)點(diǎn),且,,.
(1)求經(jīng)過(guò)、、三點(diǎn)的拋物線的解析式;
(2)點(diǎn)是拋物線上一個(gè)動(dòng)點(diǎn),且在直線的上方,連接、,并把沿翻折,得到四邊形,那么是否存在點(diǎn),使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,過(guò)拋物線頂點(diǎn)作直線軸,交軸于點(diǎn),點(diǎn)是拋物線上、兩點(diǎn)間的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與、兩點(diǎn)重合),直線、與直線分別交于點(diǎn)、,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),是否為定值?若是,試求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知的半徑為 4,是圓的直徑,點(diǎn)是的切線上的一個(gè)動(dòng)點(diǎn),連接交于點(diǎn),弦平行于,連接.
(1)試判斷直線與的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)__________時(shí),四邊形為菱形;
(3)當(dāng)___________時(shí),四邊形為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,函數(shù)的圖象與直線交于點(diǎn)A(3,m).
(1)求k、m的值;
(2)已知點(diǎn)P(n,n)(n>0),過(guò)點(diǎn)P作平行于軸的直線,交直線y=x-2于點(diǎn)M,過(guò)點(diǎn)P作平行于y軸的直線,交函數(shù) 的圖象于點(diǎn)N.
①當(dāng)n=1時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說(shuō)明理由;
②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】黃石市在創(chuàng)建國(guó)家級(jí)文明衛(wèi)生城市中,綠化檔次不斷提升.某校計(jì)劃購(gòu)進(jìn)A,B兩種樹(shù)木共100棵進(jìn)行校園綠化升級(jí),經(jīng)市場(chǎng)調(diào)查:購(gòu)買A種樹(shù)木2棵,B種樹(shù)木5棵,共需600元;購(gòu)買A種樹(shù)木3棵,B種樹(shù)木1棵,共需380元.
(1)求A種,B種樹(shù)木每棵各多少元?
(2)因布局需要,購(gòu)買A種樹(shù)木的數(shù)量不少于B種樹(shù)木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場(chǎng)價(jià)格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買樹(shù)木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角三角形ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D是AC的中點(diǎn),點(diǎn)P是BC邊上的動(dòng)點(diǎn),連接PA、PD.則PA+PD的最小值為( 。
A.B.C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為⊙O的直徑,過(guò)點(diǎn)A作AD平分∠BAC交⊙O于點(diǎn)D,過(guò)點(diǎn)D作BC的平行線分別交AC、AB的延長(zhǎng)線于點(diǎn)E、F,DG⊥AB于點(diǎn)G,連接BD.
(1)求證:△AED∽△DGB;
(2)求證:EF是⊙O的切線;
(3)若,OA=4,求劣弧的長(zhǎng)度(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足為H,與AC平行的圓O的一條切線交CD的延長(zhǎng)線于點(diǎn)M,交AB的延長(zhǎng)線于點(diǎn)E,切點(diǎn)為F,連接AF交CD于點(diǎn)N.
(1)求證:CA=CN;
(2)連接DF,若cos∠DFA=,AN=,求圓O的直徑的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com