【題目】我市啟動了第二屆“美麗港城,美在閱讀”全民閱讀活動,為了解市民每天的閱讀時間情況,隨機抽取了部分市民進行調查,根據調查結果繪制如下尚不完整的頻數(shù)分布表:

閱讀時間
x(min)

0≤x<30

30≤x<60

60≤x<90

x≥90

合計

頻數(shù)

450

400

50

頻率

0.4

0.1

1


(1)補全表格;
(2)將每天閱讀時間不低于60min的市民稱為“閱讀愛好者”,若我市約有500萬人,請估計我市能稱為“閱讀愛好者”的市民約有多少萬人?

【答案】
(1)

100;1000;0.45;0.05


(2)

解:根據題意得:

500×(0.1+0.05)=75(萬人).

答:估計我市能稱為“閱讀愛好者”的市民約有75萬人.


【解析】解:(1)根據題意得: =1000(人),
0≤x<30的頻率是: =0.45,
60≤x<90的頻數(shù)是:1000×0.1=100(人),
x≥90的頻率是:0.05,
填表如下:

閱讀時間
x(min)

0≤x<30

30≤x<60

60≤x<90

x≥90

合計

頻數(shù)

450

400

100

50

1000

頻率

0.45

0.4

0.1

0.05

1

所以答案是:0.45,100,0.05,1000;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c經過A(﹣1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關系式;
(2)設點P是直線l上的一個動點,當△PAC的周長最小時,求點P的坐標;
(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.
(4)若拋物線頂點為D,點Q為直線AC上一動點,當△DOQ的周長最小時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是菱形ABCD對角線CA的延長線上任意一點,以線段AE為邊作一個菱形AEFG,且菱形AEFG∽菱形ABCD,連接EB,GD.
(1)求證:EB=GD;
(2)若∠DAB=60°,AB=2,AG= ,求GD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,按此規(guī)律,則第(n)個圖形中面積為1的正方形的個數(shù)為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在5×5的正方形網格中,每個小正方形的邊長都是1,在所給網格中按下列要求畫出圖形:

(1)已知點A在格點(即小正方形的頂點),畫一條線段AB,長度為,且點B在格點上;

(2)以上題中所畫線段AB為一邊,另外兩條邊長分別是3,,畫一個三角形ABC,使點C在格點上(只需畫出符合條件的一個三角形);

(3)所畫的三角形ABCAB邊上高線長為_________(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經過的最短距離為_________.(π取3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,順次連接邊長為1的正方形ABCD四邊的中點,得到四邊形A1B1C1D1 , 然后順次連接四邊形A1B1C1D1四邊的中點,得到四邊形A2B2C2D2 , 再順次連接四邊形A2B2C2D2四邊的中點,得到四邊形A3B3C3D3 , …,按此方法得到的四邊形A8B8C8D8的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ABCD中,CEAD于點E,CB=CE,點FCD邊上的一點,CB=CF,連接BFCE于點G.

(1)若,CF=,求CG的長;

(2)求證:AB=ED+CG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(3,0),B(0,4),則點B100的坐標為

查看答案和解析>>

同步練習冊答案