下面的說(shuō)法中錯(cuò)誤有( 。
①兩邊與第三邊上的高對(duì)應(yīng)相等的兩個(gè)三角形全等
②兩邊與其中一邊上的高對(duì)應(yīng)相等的兩個(gè)三角形全等
③兩邊及其夾角的平分線對(duì)應(yīng)相等的兩個(gè)三角形全等
④兩邊與其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)鈍角三角形全等.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
①如圖,

△ABC與△ABC′中,AB=AB,AC=AC′,高AD相同,但是,△ABC與△ABC′不全等,故選項(xiàng)錯(cuò)誤;
②有兩邊及其中一邊上的高對(duì)應(yīng)相等的兩個(gè)三角形不一定全等,
如圖:△ABC和△ACD,的邊AC=AC,BC=CD,高AE=AE,

但△ABC和△ACD不全等,故選項(xiàng)錯(cuò)誤;

作DEAB,交BC于E,作D′E′A′B′,交B′C′于E′,
則∠EDB=∠ABD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠DBE=∠EDB,
∴DE=BE,
∵DEAB,
∴△EDC△BAC,
DE
AB
=
CE
BC
,
DE
AB
=
BC-DE
BC
,
BC
AB
=
BC-DE
DE
=
BC
DE
-1,
同理
B′C′
A′B′
=
B′C′
D′E′
-1,
∵AB=A′B′,BC=B′C′,
∴DE=D′E′,
∴BE=B′E′,
∴△BDE≌△B′D′E′(SSS),
∴∠DBE=∠D′B′E′,
∵BD平分∠ABC,B′D′平分∠A′B′C′,
∴∠ABC=∠A′B′C′,
∵在△ABC和△A′B′C′中,
AB=A′B′
∠ABC=∠A′B′C′
BC=B′C′

∴△ABC≌△A′B′C′(SAS),∴③正確;
④根據(jù)兩邊與其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)鈍角三角形一定全等,正確.
故選:B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AD⊥BC,D為BC的中點(diǎn),則△ABD≌△______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知四邊形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,點(diǎn)E為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPE與△CQP是否全等?請(qǐng)說(shuō)明理由.
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPE與△CQP全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在如圖所示的4×4正方形網(wǎng)格中.∠1+∠2+∠3+∠4+∠5+∠6+∠7=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖在△ABC和△DCB中∠ACB=∠DBC,當(dāng)添加條件:______時(shí),△ABC≌△DCB(只需填一個(gè)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則△______≌△______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)E,C在線段BF上,在下列條件中①BE=CF,②ABDE,③AC=DF,④AB=DE任選三個(gè)作為已知條件,余下一個(gè)作為結(jié)論,則有很多正確的命題,如①③④?②等等,
(1)仿照上面的寫(xiě)法寫(xiě)出所有正確的結(jié)論;
(2)選擇其中一個(gè)結(jié)論加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,AD平分∠BAC.
求證:△ABD≌△ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在平面內(nèi)取一點(diǎn)O,過(guò)點(diǎn)O作兩條夾角為60°的數(shù)軸,使它們以點(diǎn)O為公共原點(diǎn)且具有相同的單位長(zhǎng)度,這樣在平面內(nèi)建立的坐標(biāo)系稱(chēng)為斜坐標(biāo)系,我們把水平放置的數(shù)軸稱(chēng)為橫軸(記作a軸),將斜向放置的數(shù)軸稱(chēng)為斜軸(記作b軸).類(lèi)似
于直角坐標(biāo)系,對(duì)于斜坐標(biāo)平面內(nèi)的任意一點(diǎn)P,過(guò)點(diǎn)P分別作b軸、a軸的平行線交a軸、b軸于點(diǎn)M、N,若點(diǎn)M、N分別在a軸、b軸上所對(duì)應(yīng)的實(shí)數(shù)為m與n,則稱(chēng)有序?qū)崝?shù)對(duì)(m,n)為點(diǎn)P的坐標(biāo).可知建立了斜坐標(biāo)系的平面內(nèi)任意一個(gè)點(diǎn)P與有序?qū)崝?shù)對(duì)(m,n)之間是相互唯一確定的.

(1)請(qǐng)寫(xiě)出圖2(其中虛線均平行于a軸或b軸)中點(diǎn)P的坐標(biāo),并在圖中標(biāo)出點(diǎn)Q(2,-3);
(2)如圖3(其中虛線均平行于a軸或b軸),在斜坐標(biāo)系中點(diǎn)A(1,4)、B(1,-1)、C(6,-1).

①判斷△ABC的形狀,并簡(jiǎn)述理由;
②如果點(diǎn)D在邊BC上,且其坐標(biāo)為(2.5,-1),試問(wèn):在邊BC上是否存在點(diǎn)E使△ACE與△ABD相全等?如有,請(qǐng)寫(xiě)出點(diǎn)E的坐標(biāo),并說(shuō)明它們?nèi)鹊睦碛;如沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案