分析 (1)由等腰直角三角形的性質(zhì)得出AB=BC,BD=BE,∠ABC=∠DBE=90°,得出∠ABD=CBE,證出△ABD≌△CBE(SAS),得出AD=CE;
(2)△ABD≌△CBE得出∠BAD=∠BCE,再由∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,得出∠AFC=∠ABC=90°,證出結(jié)論.
解答 (1)證明:∵△ABC和△DBE是等腰直角三角形,
∴AB=BC,BD=BE,∠ABC=∠DBE=90°,
∴∠ABC-∠DBC=∠DBE-∠DBC,
即∠ABD=CBE,
在△ABD和△CBE中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABD=∠CBE}\\{BD=BE}\end{array}\right.$,
∴△ABD≌△CBE(SAS),
∴AD=CE;
(2)證明:延長(zhǎng)AD分別交BC和CE于G和F,如圖所示:
∵△ABD≌△CBE,
∴∠BAD=∠BCE,
∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,
又∵∠BGA=∠CGF,
∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,
∴∠AFC=∠ABC=90°,
∴AD⊥CE.
點(diǎn)評(píng) 本題考查了等腰直角三角形的性質(zhì)和全等三角形的判定與性質(zhì);證明三角形全等是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | AB=AC | B. | DB=EC | C. | ∠ADB=∠AEC | D. | ∠B=∠C |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 有一組對(duì)邊平行的四邊形是平行四邊形 | |
B. | 有一個(gè)角是直角的四邊形是矩形 | |
C. | 對(duì)角線互相垂直平分的四邊形是正方形 | |
D. | 有一組鄰邊相等的平行四邊形是菱形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 14 | C. | 10或14 | D. | 8或10 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com