【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)C,PB⊥x軸于點(diǎn)B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,求出點(diǎn)D的坐標(biāo);如果不存在,說(shuō)明理由.
【答案】
(1)
解:∵AC=BC,CO⊥AB,A(﹣4,0),
∴O為AB的中點(diǎn),即OA=OB=4,
∴P(4,2),B(4,0),
將A(﹣4,0)與P(4,2)代入y=kx+b得: ,
解得:k= ,b=1,
∴一次函數(shù)解析式為y= x+1,
將P(4,2)代入反比例解析式得:m=8,即反比例解析式為y=
(2)
解:假設(shè)存在這樣的D點(diǎn),使四邊形BCPD為菱形,如圖所示,連接DC與PB交于E,
∵四邊形BCPD為菱形,
∴CE=DE=4,
∴CD=8,
將x=8代入反比例函數(shù)y= 得y=1,
∴D點(diǎn)的坐標(biāo)為(8,1)
∴則反比例函數(shù)圖象上存在點(diǎn)D,使四邊形BCPD為菱形,此時(shí)D坐標(biāo)為(8,1)
【解析】(1)由AC=BC,且OC⊥AB,利用三線(xiàn)合一得到O為AB中點(diǎn),求出OB的長(zhǎng),確定出B坐標(biāo),從而得到P點(diǎn)坐標(biāo),將P與A坐標(biāo)代入一次函數(shù)解析式求出k與b的值,確定出一次函數(shù)解析式,將P坐標(biāo)代入反比例解析式求出m的值,即可確定出反比例解析式;(2)假設(shè)存在這樣的D點(diǎn),使四邊形BCPD為菱形,根據(jù)菱形的特點(diǎn)得出D點(diǎn)的坐標(biāo).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用菱形的判定方法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線(xiàn),垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線(xiàn)若垂直,順理成章為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于點(diǎn)M,有FM=EM.
(1)求證:AE∥CF;
(2)若AM平分∠FAE,求證:FE垂直平分AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一架長(zhǎng)2.5米的梯子AB如圖所示斜靠在一面墻上,這時(shí)梯足B離墻底C(∠C=90°)的距離BC為0.7米.
(1)求此時(shí)梯頂A距地面的高度AC;
(2)如果梯頂A下滑0.9米,那么梯足B在水平方向,向右滑動(dòng)了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)O按如圖方式疊放在一起.
(1)判斷大小關(guān)系:∠AOD______∠BOC(填>、=、<等)
(2)若 ∠BOD=35°,則∠AOC= ;若∠AOC=135°,則∠BOD= ;
(3)猜想 ∠AOC與∠BOD的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)M、N分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),且BM=CN,AM交BN于點(diǎn)P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上一點(diǎn),OQ⊥BC于點(diǎn)Q,過(guò)點(diǎn)B作半圓O的切線(xiàn),交OQ的延長(zhǎng)線(xiàn)于點(diǎn)P,PA交半圓O于R,則下列等式中正確的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)M為直線(xiàn)AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN
求證: ;
分別寫(xiě)出點(diǎn)M在如圖2和圖3所示位置時(shí),線(xiàn)段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;
如圖4,當(dāng)時(shí),證明: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線(xiàn)段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.則下列結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正確的是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com