美麗的東昌湖賦予江北水城以靈性,周邊景點密布.如圖,A、B為湖濱的兩個景點,C為湖心的一個景點,景點B在景點C的正東,從景點A看,景點B在北偏東75°方向,景點C在北偏東30°方向,一游客自景點A駕船以每分鐘20米的速度行駛了10分鐘到達景點C,之后又以同樣的速度駛向景點B,該游客從景點C到景點B需用多長時間?(精確到1分鐘)
如圖,過點A作AD垂直于直線BC,垂足為D,
根據(jù)題意,得AC=20×10=200.
在Rt△ADC中,
AD=AC•cos∠CAD=200•cos30°=100
3
,
DC=AC•sin∠CAD=200•sin30°=100.
在Rt△ADB中,
DB=AD•tan∠BAD=100
3
tan75°.
∴CB=DB-DC=100
3
tan75°-100.
CB
20
=5
3
tan75°-5≈27.
即該游客自景點C駛向景點B約需27分鐘.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,兩建筑物的水平距離為a米,從A點測得D點的俯角為α,測得C點的俯角為β,則較低建筑物的高為( 。
A.a(chǎn)米B.a(chǎn)cotα米
C.a(chǎn)cotβ米D.a(chǎn)(tanβ-tanα)米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示:在Rt△ABC中,∠A=90°,cosB=
4
5
,BC=5,DEBC,DB=AE,則BD=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某數(shù)學課外活動小組測量電視塔AB的高度.他們借助一個高度為30m的建筑物CD進行測量,在點C處測得塔頂B的仰角為45°,在點E處測得B的仰角為37°(B、D、E三點在一條直線上).求電視塔的高度h.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在海岸邊有一港口O.已知:小島A在港口O北偏東30°的方向,小島B在小島A正南方向,OA=60海里,OB=20
3
海里.計算:
(1)小島B在港口O的什么方向;
(2)求兩小島A,B的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在建筑樓梯時,設計者要考慮樓梯的安全程度,如圖1,虛線為樓梯的斜度線,斜度線與地板的夾角為傾角θ,一般情況下,傾角θ愈小,樓梯的安全程度愈高.如圖2,設計者為提高樓梯的安全程度,要把樓梯的傾角由θ1減至θ2,這樣樓梯占用地板的長度由d1增加到d2,已知d1=4m,∠θ1=40°,∠θ2=36°,求樓梯占用地板的長度增加了多少?(精確到0.01m)
參考數(shù)據(jù):sin36°=0.5878,cos36°=0.8090,tan36°=0.7265,sin40°=0.6428,cos40°=0.7660,tan40°=0.8391.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

居民樓的采光是人們購買樓房時關心的一個重要問題,冬至是一年中太陽相對地球北半球位置最低的時刻,只要此時樓房的最低層能采到陽光,一年四季整座樓均能受到陽光的照射,某地區(qū)冬至時陽光與地面所成的角約為30°,如圖所示.現(xiàn)有A、B、C、D四種設計方案提供的居民甲樓的高H(米)與兩樓間距L(米)的數(shù)據(jù),如下表所示.僅就圖中居民樓乙的采光問題,你認為哪種方案設計較為合理,并說明理由.(參考數(shù)據(jù)
3
=1.732)
ABCD
H(米)12151618
L(米)18252830

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

小明在距離一鐵塔的底部30米處測得此鐵塔的頂部的仰角為α,那么這一鐵塔的高度為______米(用含α的三角比表示).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在某建筑物AC上,掛著“抗震救災,眾志成城”的宣傳條幅BC,王亮站在點F處,看條幅頂端B,測得其仰角為30°,他從F處再往條幅方向前行20米到達點E處,看條幅頂端B,測得其仰角為60°,求宣傳條幅BC的長.(王亮的身高不計,結(jié)果精確到0.1米)
[參考數(shù)據(jù):
3
≈1.732,
2
≈1.414
].

查看答案和解析>>

同步練習冊答案