如圖,在△ABC中,AB=AC,BC=8,tanC=,如果將△ABC沿直線l翻折后,點(diǎn)B落在邊AC的中點(diǎn)處,直線l與邊BC交于點(diǎn)D,那么BD的長(zhǎng)為   
【答案】分析:首先根據(jù)已知得出△ABC的高以及B′E的長(zhǎng),利用勾股定理求出BD即可.
解答:解:過(guò)點(diǎn)A作AQ⊥BC于點(diǎn)Q,
∵AB=AC,BC=8,tanC=,
=,QC=BQ=4,
∴AQ=6,
∵將△ABC沿直線l翻折后,點(diǎn)B落在邊AC的中點(diǎn)處,
過(guò)B′點(diǎn)作B′E⊥BC于點(diǎn)E,
∴B′E=AQ=3,
=,
∴EC=2,
設(shè)BD=x,則B′D=x,
∴DE=8-x-2=6-x,
∴x2=(6-x)2+32,
解得:x=,
直線l與邊BC交于點(diǎn)D,那么BD的長(zhǎng)為:
故答案為:
點(diǎn)評(píng):此題主要考查了翻折變換的性質(zhì)以及勾股定理和銳角三角函數(shù)關(guān)系,根據(jù)已知表示出DE的長(zhǎng)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案