【題目】、兩地相距千米,一列慢車從地開出,每小時(shí)行駛千米,一列快車從地開出,每小時(shí)行駛千米,兩車同時(shí)開出.
若相向而行,出發(fā)后多少小時(shí)相遇?
若相背而行,多少小時(shí)后,兩車相距千米
若兩車同向而行,快車在慢車后面,多少小時(shí)后,快車追上慢車?
【答案】(1)若相向而行,出發(fā)后小時(shí)相遇;(2)若兩車同向而行,快車在慢車后面,小時(shí)后,快車追上慢車.
【解析】
(1)設(shè)出發(fā)后x小時(shí)兩車相遇,根據(jù)兩地間距=相遇時(shí)間×兩車速度之和,即可列出關(guān)于x的一元一次方程,解方程即可;
(2)設(shè)y小時(shí)后兩車相距800千米,根據(jù)行駛時(shí)間×兩車速度和=兩車間距-兩地間距,即可列出關(guān)于y的一元一次方程,解方程即可;
(3)設(shè)出發(fā)后z小時(shí)快車追上慢車,根據(jù)兩地間距=相遇時(shí)間×兩車速度之差,即可列出關(guān)于z的一元一次方程,解方程即可.
(1)設(shè)出發(fā)后x小時(shí)相遇,
根據(jù)題意,可得(80+120)x=600,
解得x=3.
答:若相向而行,出發(fā)后3小時(shí)相遇;
(2)設(shè)y小時(shí)后兩車相距800千米,
根據(jù)題意,可得(80+120)y=800-600,
解得y=1.
答:若相背而行,1小時(shí)后,兩車相距800千米;
(3)設(shè)z小時(shí)后快車追上慢車,
根據(jù)題意,可得(120-80)z=600,
解得z=15.
答:若兩車同向而行,快車在慢車后面,15小時(shí)后,快車追上慢車.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正兩位數(shù)的個(gè)位數(shù)字是a,十位數(shù)字比個(gè)位數(shù)字大2.
(1)列式表示這個(gè)兩位數(shù);
(2)把這個(gè)兩位數(shù)的十位上的數(shù)字與個(gè)位上的數(shù)字交換位置得到一個(gè)新的兩位數(shù),試說明新數(shù)與原數(shù)的和能被22整除.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,ABCD的四個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,8),B(﹣6,8),C(﹣6,0),D(0,0),現(xiàn)有動(dòng)點(diǎn)P在線段CB上運(yùn)動(dòng),當(dāng)△ADP為等腰三角形時(shí),P點(diǎn)坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,點(diǎn)E、F分別在邊CD、AB上,且DE=BF,∠ECA=∠FCA.
(1)求證:四邊形AFCE是菱形;
(2)若AB=8,BC=4,求菱形AFCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c滿足|a﹣|++(c﹣4)2=0.
(1)求a、b、c的值;
(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育老師對自己任教的55名男生進(jìn)行一百米摸底測試,若規(guī)定男生成績?yōu)?6秒合格,下表是隨機(jī)抽取的10名男生分A、B兩組測試的成績與合格標(biāo)準(zhǔn)的差值(比合格標(biāo)準(zhǔn)多的秒數(shù)為正,少的秒數(shù)為負(fù)).
A 組 | ﹣1.5 | +1.5 | ﹣1 | ﹣2 | ﹣2 |
B組 | +1 | +3 | ﹣3 | +2 | ﹣3 |
(1)請你估算從55名男生中合格的人數(shù)大約是多少?
(2)通過相關(guān)的計(jì)算,說明哪個(gè)組的成績比較均勻;
(3)至少舉出三條理由說明A組成績好于B組成績,或找出一條理由來說明B組好于A組.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線l1經(jīng)過點(diǎn)E(1,0)和F(5,0),并交y軸于D(0,﹣5);拋物線l2:y=ax2﹣(2a+2)x+3(a≠0),
(1)試求拋物線l1的函數(shù)解析式;
(2)求證:拋物線 l2與x軸一定有兩個(gè)不同的交點(diǎn);
(3)若a=1,拋物線l1、l2頂點(diǎn)分別為、;當(dāng)x的取值范圍是時(shí),拋物線l1、l2 上的點(diǎn)的縱坐標(biāo)同時(shí)隨橫坐標(biāo)增大而增大;
(4)若a=1,已知直線MN分別與x軸、l1、l2分別交于點(diǎn)P(m,0)、M、N,且MN∥y軸,當(dāng)1≤m≤5時(shí),求線段MN的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情境】
在△ABC中,AB=AC,點(diǎn)P為BC所在直線上的任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點(diǎn)C作CF⊥AB,垂足為F.當(dāng)P在BC邊上時(shí)(如圖1),求證:PD+PE=CF.
圖① 圖② 圖③
證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.(不要證明)
【變式探究】
當(dāng)點(diǎn)P在CB延長線上時(shí),其余條件不變(如圖3).試探索PD、PE、CF之間的數(shù)量關(guān)系并說明理由.
請運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:
【結(jié)論運(yùn)用】
如圖4,將長方形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;
【遷移拓展】
在直角坐標(biāo)系中.直線l1:y=與直線l2:y=2x+4相交于點(diǎn)A,直線l1、l2與x軸分別交于點(diǎn)B、點(diǎn)C.點(diǎn)P是直線l2上一個(gè)動(dòng)點(diǎn),若點(diǎn)P到直線l1的距離為1.求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:w
①若a+b+c=0,且abc≠0,則方程a+bx+c=0的解是x=1;
②若a(x﹣1)=b(x﹣1)有唯一的解,則a≠b;
③若b=2a,則關(guān)于x的方程ax+b=0(a≠0)的解為x=﹣;
④若a+b+c=1,且a≠0,則x=1一定是方程ax+b+c=1的解;
其中結(jié)論正確個(gè)數(shù)有( )
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com