【題目】某校團(tuán)委計(jì)劃在元且期間組織優(yōu)秀團(tuán)員到敬老院去服務(wù),現(xiàn)選出了10名優(yōu)秀團(tuán)員參加服務(wù),其中男生6人,女生4人.

若從這10人中隨機(jī)選一人當(dāng)隊(duì)長(zhǎng),求選中女生當(dāng)隊(duì)長(zhǎng)的概率;

現(xiàn)決定從甲、乙中選一人當(dāng)隊(duì)長(zhǎng),他們準(zhǔn)備以游戲的方式?jīng)Q定由誰(shuí)擔(dān)任,游戲規(guī)則如下:將四張牌面數(shù)字分別為23,4,5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則選甲為隊(duì)長(zhǎng);否則,選乙為隊(duì)長(zhǎng)試問(wèn)這個(gè)游戲公平嗎?請(qǐng)用樹(shù)狀圖或列表法說(shuō)明理由.

【答案】理由見(jiàn)解析.

【解析】

直接利用概率公式求出即可;

利用列表法表示出所有可能進(jìn)而利用概率公式求出即可.

現(xiàn)有10人準(zhǔn)備到敬老院去服務(wù),其中男生6人,女生4人,

從這10人中隨機(jī)選一人當(dāng)隊(duì)長(zhǎng),選到女生的概率為

表格如下:

2

1

2

3

4

5

2

3

4

5

牌面數(shù)字之和的所有可能結(jié)果為:5,6,7,57,86,7,9,78,912種,

甲為隊(duì)長(zhǎng)的概率為:,

乙為隊(duì)長(zhǎng)的概率為:

因?yàn)?/span>,

所以游戲不公平.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)含30°角的直角三角形ABC和直角三角形BED如圖那樣拼接,C、B、D在同一直線上,ACBD,∠ABC=∠E30°,∠ACB=∠BDE90°,M為線段CB上一個(gè)動(dòng)點(diǎn)(不與C、B重合).過(guò)MMNAM,交直線BEN,過(guò)NNHBDH

1)當(dāng)M在什么位置時(shí),AMC∽△NBH?

2)設(shè)AC

①若CM2,求BH的長(zhǎng);

②當(dāng)M沿線段CB運(yùn)動(dòng)時(shí),連接AN(圖中未連),求AMN面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在研究利用木板余料裁出最大面積的矩形時(shí)發(fā)現(xiàn):如圖1,是一塊直角三角形形狀的木板余料,以為內(nèi)角裁一個(gè)矩形當(dāng)DE,EF是中位線時(shí),所裁矩形的面積最大若木板余料的形狀改變,請(qǐng)你探究:

如圖2,現(xiàn)有一塊五邊形的木板余料ABCDE,,,,現(xiàn)從中裁出一個(gè)以為內(nèi)角且面積最大的矩形,則該矩形的面積為______

如圖3,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量,,且,從中裁出頂點(diǎn)M,N在邊BC上且面積最大的矩形PQMN,則該矩形的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O外一點(diǎn),連接OC交⊙O于點(diǎn)D,連接BD并延長(zhǎng)交線段AC于點(diǎn)E,∠CDE=∠CAD

1)求證:CD2ACEC;

2)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;

3)若AEEC,求tanB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點(diǎn)A、B,若∠AOB=45°,則AOB的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△中,∠,點(diǎn)邊上一點(diǎn),以為直徑的⊙與邊相切于點(diǎn),與邊交于點(diǎn),過(guò)點(diǎn)于點(diǎn),連接

(1)求證:

(2)若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBC,AD=CD,E是對(duì)角線BD上一點(diǎn),且EA=EC.

(1)求證:四邊形ABCD是菱形;

(2)如果BE=BC,且CBE:BCE=2:3,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知拋物線y=﹣x2+x+2x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),拋物線的頂點(diǎn)為Q,連接BC

1)求直線BC的解析式;

2)點(diǎn)P是直線BC上方拋物線上的一點(diǎn),過(guò)點(diǎn)PPDBC于點(diǎn)D,在直線BC上有一動(dòng)點(diǎn)M,當(dāng)線段PD最大時(shí),求PM+MB最小值;

3)如圖②,直線AQy軸于G,取線段BC的中點(diǎn)K,連接OK,將GOK沿直線AQ平移得GO'K,將拋物線y=﹣x2+x+2沿直線AQ平移,記平移后的拋物線為y,當(dāng)拋物線y經(jīng)過(guò)點(diǎn)Q時(shí),記頂點(diǎn)為Q,是否存在以G'K'、Q'為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大海中有AB兩個(gè)島嶼,為測(cè)量它們之間的距離,在海岸線PQ上點(diǎn)E處測(cè)得∠AEP60°,∠BEQ45°;在點(diǎn)F處測(cè)得∠AFP45°,∠BFQ90°,EF2km

1)判斷ABAE的數(shù)量關(guān)系,并說(shuō)明理由;

2)求兩個(gè)島嶼AB之間的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案