已知x=1+,求代數(shù)式的值.
【答案】分析:這道求代數(shù)式值的題目,不應考慮把x的值直接代入,通常做法是先把代數(shù)式化簡,然后再代入求值.分式的四則運算是整式四則運算的進一步發(fā)展,是有理式恒等變形的重要內容之一.
在計算時,首先要弄清楚運算順序,先去括號,再進行分式的乘除.
解答:解:原式=-
=
=
當x=1+時,原式=
點評:本題的關鍵是分式的通分與化簡,然后把給定的值代入求值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知a、b、c是△ABC的三條邊長,若x=-1為關于x的一元二次方程(c-b)x2-2(b-a)x+(a-b)=0的根.
(1)△ABC是等腰三角形嗎?△ABC是等邊三角形嗎?請寫出你的結論并證明;
(2)若代數(shù)式子
a-2
+
2-a
有意義,且b為方程y2-8y+15=0的根,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網(wǎng)九年義務教育三年制初級中學教科書代數(shù)第三冊中,有以下幾段文字:“對于坐標平面內任意一點M,都有唯一的一對有序實數(shù)(x,y)和它對應;對于任意一對有序實數(shù)(x,y),在坐標平面內都有唯一的一點M和它對應,也就是說,坐標平面內的點與有序實數(shù)對是一一對應的.”“一般地,對于一個函數(shù),如果把自變量x與函數(shù)y的每對對應值分別作為點的橫坐標與縱坐標,在坐標平面內描出相應的點,這些點所組成的圖形,就是這個函數(shù)的圖象.”“實際上,所有一次函數(shù)的圖象都是一條直線.”“因為兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線,就可以了.”由此可知:滿足函數(shù)關系式的有序實數(shù)對所對應的點,一定在這個函數(shù)的圖象上;反之,函數(shù)圖象上的點的坐標,一定滿足這個函數(shù)的關系式.另外,已知直線上兩點的坐標,便可求出這條直線所對應的一次函數(shù)的解析式.
問題1:已知點A(m,1)在直線y=2x-1上,求m的方法是:
 
,∴m=
 
;已知點B(-2,n)在直線y=2x-1上,求n的方法是:
 
,∴n=
 
;
問題2:已知某個一次函數(shù)的圖象經過點P(3,5)和Q(-4,-9),求這個一次函數(shù)的解析式時,一般先
 
,再由已知條件可得
 
.解得:
 
.∴滿足已知條件的一次函數(shù)的解析式為:
 
.這個一次函數(shù)的圖象與兩坐標軸的交點坐標為:
 
,在右側給定的平面直角坐標系中,描出這兩個點,并畫出這個函數(shù)的圖象.像解決問題2這樣,
 
的方法,叫做待定系數(shù)法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在一次探究性活動中,教師提出了問題:已知矩形的長和寬分別是2和1,是否存在另一個矩形,它的周長和面積分別是已知矩形周長和面積的2倍?設所求矩形的長和寬分別為x,y
(1)小明從“圖形”的角度來研究:所求矩形的周長應滿足關系式①
y=-x+6
y=-x+6
,面積應滿足關系式②
y=
4
x
y=
4
x
,在同一坐標系中畫出①②的圖象,觀察所畫的圖象,你能得出什么結論?
(2)小麗從“代數(shù)”的角度來研究:由題意可列方程組
y=-x+6
y=
4
x
y=-x+6
y=
4
x
,解這個方程組,你能得出什么結論?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知xm+2ny3與-2x5y2n-m是同類項,求代數(shù)m2n3-2m3n2+3m2n3的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆浙江省杭州市高橋初中教育集團九年級第二學期期初質量檢測數(shù)學卷(帶解析) 題型:解答題

已知、均為銳角,且,。求的度數(shù)。
小聰、小明、小慧三位同學都通過構造一個幾何圖形,使這個代數(shù)計算問題快速、簡捷地得到了解決,請你思考他們的方法,選擇其中一個圖形,解答上述問題。(也可以自己構造一個不同的圖形,并完成解答)

查看答案和解析>>

同步練習冊答案