【題目】如圖,在矩形ABCD中,AB4BC8,把△ABC沿著AC向上翻折得到△AEC,ECAD邊于點F,則點FAC的距離是_____

【答案】

【解析】

由矩形的性質可得AD=BC=8,ADBC,AB=CD=4,∠B=D=90°,由折疊的性質可得∠ACB=FCA,可證AF=CF,由勾股定理可求AF的長,由三角形的面積公式可求點FAC的距離.

∵四邊形ABCD是矩形,

ADBC8,ADBCABCD4,∠B=∠D90°

∴∠FAC=∠ACB,

∵把ABC沿著AC向上翻折得到AEC

∴∠ACB=∠FCA,

∴∠FCA=∠FAC

AFCF,

AB4,BC8,

AC,

RtFDC中,CF2CD2+DF2,

AF216+(8AF)2,

AF5

SAFC×AC×FAC的距離=×AF×CD10

∴點FAC的距離=

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形中,當?shù)?/span>1次作,第2次作;第3次作,……依次方法繼續(xù)作垂直線段,當作到第10次時,所得的最小的三角形的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加快智慧校園建設,某市準備為試點學校采購一批、兩種型號的一體機,經(jīng)過市場調(diào)查發(fā)現(xiàn),今年每套型一體機的價格比每套型一體機的價格多0.6萬元,且用960萬元恰好能購買500型一體機和200型一體機.

1)求今年每套型、型一體機的價格各是多少萬元

2)該市明年計劃采購型、型一體機1100套,考慮物價因素,預計明年每套型一體機的價格比今年上漲25%,每套型一體機的價格不變,若購買型一體機的總費用不低于購買型一體機的總費用,那么該市明年至少需要投入多少萬元才能完成采購計劃?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①拋物線yax2+bx+3a≠0)與x軸,y軸分別交于點A(﹣1,0),B3,0),點C三點.

1)試求拋物線的解析式;

2)點D2,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;

3)點N在拋物線的對稱軸上,點M在拋物線上,當以MN、BC為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程有實數(shù)根.

(1)m的值;

(2)先作的圖象關于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式;

(3)在(2)的條件下,當直線y=2x+n(n≥m)與變化后的圖象有公共點時,求的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABDCAB=AD,對角線ACBD交于點O,AC平分∠BAD,過點CCEABAB的延長線于點E.連接OE

1)求證:四邊形ABCD是菱形;

2)若AB=OE=2,求線段CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市茶葉專賣店銷售某品牌茶葉,其進價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:

1)每千克茶葉應降價多少元?

2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的 幾折出售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點在雙曲線的第一圖像的那一支上,垂直于軸于點,點軸正半軸上,且,點在線段上,且,點的中點,若面積為3,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用周長為30米的籬笆圍成.已知墻長為米,設苗圃園垂直于墻的一邊長為米,苗圃園的面積為平方米.

1)直接寫出的函數(shù)關系式;

2)若,求的取值范圍;

3)當時,求的最大值.

查看答案和解析>>

同步練習冊答案