如圖,在Rt△ABC中,∠B=90°,沿AD折疊,使點(diǎn)B落在斜邊AC上,若AB=3,BC=4,則BD= .
考點(diǎn):
翻折變換(折疊問題)。
分析:
由題意可得∠AB′D=∠B=90°,AB′=AB=3,由勾股定理即可求得AC的長(zhǎng),則可得B′C的長(zhǎng),然后設(shè)BD=B′D=x,則CD=BC﹣BD=4﹣x,由勾股定理CD2=B′C2+B′D2,即可得方程,解方程即可求得答案.
解答:
解:如圖,點(diǎn)B′是沿AD折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn),連接B′D,
∴∠AB′D=∠B=90°,AB′=AB=3,
∵在Rt△ABC中,∠B=90°,AB=3,BC=4,
∴AC=5,
∴B′C=AC﹣AB′=5﹣3=2,
設(shè)BD=B′D=x,則CD=BC﹣BD=4﹣x,
在Rt△CDB′中,CD2=B′C2+B′D2,
即:(4﹣x)2=x2+4,
解得:x=,
∴BD=.
故答案為:.
點(diǎn)評(píng):
此題考查了折疊的性質(zhì)與勾股定理.此題難度適中,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,注意掌握折疊中的對(duì)應(yīng)關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com