【題目】如圖,以半圓中的一條弦BC(非直徑)為對稱軸將弧BC折疊后與直徑AB交于點D,若=,且AB=10,則CB的長為_____.
【答案】4
【解析】
作AB關(guān)于直線BC的對稱線段A′B,交半圓于D′,連接AC、CA′,首先構(gòu)造全等三角形,然后再利用勾股定理和割線定理解答.
解:如圖,∵,且AB=10,
∴AD=4,BD=6,
作AB關(guān)于直線BC的對稱線段A′B,交半圓于D′,連接AC、CA′,
可得A、C、A′三點共線,
∵線段A′B與線段AB關(guān)于直線BC對稱,
∴AB=A′B,
∴AC=A′C,AD=A′D′=4,A′B=AB=10.
而A′CA′A=A′D′A′B,
即A′C2A′C=4×10=40.
則A′C2=20,
又∵A′C2=A′B2﹣CB2,
∴20=100﹣CB2,
∴CB=4.
故答案是:4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】選用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>
(1)3x2-7x+2=0 (2)(x+1)(x-2)=x+1 (3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2﹣2x+3.
(1)把函數(shù)關(guān)系式配成頂點式并求出圖象的頂點坐標(biāo)和對稱軸.
(2)若圖象與x軸交點為A.B,與y軸交點為C,求A、B、C三點的坐標(biāo);
(3)在圖中畫出圖象.并求出△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,己知O為坐標(biāo)原點,點,以點A為旋轉(zhuǎn)中心,把順時針旋轉(zhuǎn),得.
(Ⅰ)如圖①,當(dāng)旋轉(zhuǎn)后滿足軸時,求點C的坐標(biāo).
(Ⅱ)如圖②,當(dāng)旋轉(zhuǎn)后點C恰好落在x軸正半軸上時,求點D的坐標(biāo).
(Ⅲ)在(Ⅱ)的條件下,邊上的一點P旋轉(zhuǎn)后的對應(yīng)點為,當(dāng)取得最小值時,求點P的坐標(biāo)(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD為⊙O的直徑,CD⊥AB,垂足為點F,AO⊥BC,垂足為點E,AO=1.
(1)求∠C的大;
(2)求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點P,過點B的直線交OP的延長線于點C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若OA=5,OP=3,求CB的長;
(3)設(shè)△AOP的面積是S1,△BCP的面積是S2,且.若⊙O的半徑為4,BP=,求tan∠CBP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一座鋼結(jié)構(gòu)橋梁的框架是△ABC,水平橫梁BC長18米,中柱AD高6米,其中D是BC的中點,且AD⊥BC.
(1)求sinB的值;
(2)現(xiàn)需要加裝支架DE、EF,其中點E在AB上,BE=2AE,且EF⊥BC,垂足為點F,求支架DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若OC=3,OA=5,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.
求:(1)求∠CDB的度數(shù);
(2)當(dāng)AD=2時,求對角線BD的長和梯形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com