【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以點A為圓心,AB長為半徑作弧交AC于D,分別以B、D為圓心,以大于BD長為半徑作弧,兩弧交于點E,射線AE與BC于F,過點F作FG⊥AC于G,則FG的長為______.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中作圖:①分別以點B,C為圓心,BC長為半徑畫弧,分別交AD于點H,G;②分別以點B,C為圓心,大于BC的一半長為半徑畫弧,兩弧相交于點E,F;③作直線EF,交AD于點P.下列結(jié)論不一定成立的是( )
A.BC=BHB.CG=AD
C.PB=PCD.GH=2AB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程(米)與小張出發(fā)后的時間 (分)之間的函數(shù)圖象如圖所示.
(1)求小張騎自行車的速度;
(2)求小張停留后再出發(fā)時與之間的函數(shù)表達(dá)式:.
(3)求小張與小李相遇時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)解方程組:.
(2)如圖,把矩形紙片ABCD沿EF折疊,使點B落在邊AD上的點B′處,點A落在點A′處.求證:B′E=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】描點畫圖是探究未知函數(shù)圖象變化規(guī)律的一個重要方法.下面是通過描點畫圖感知函數(shù)y=圖象的變化規(guī)律的過程.
(1)下表是y與x的幾組對應(yīng)值,請完成表格.
x | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | 4 | … |
y | 0 | 1 | … |
(2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標(biāo)系xOy中描出對應(yīng)的點,并用平滑的曲線畫出該函數(shù)的圖象;
(3)根據(jù)圖象,寫出兩條該函數(shù)所具有的性質(zhì):
性質(zhì)① ;
性質(zhì)② ;
(4)若直線y=x與該函數(shù)的圖象的交點A的橫坐標(biāo)為a,直接比較a與的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,DE是⊙O的直徑,點A、C是直徑DE上方半圓上的兩點,且AO⊥CO.連接AE,CD相交于點F,點B是直徑DE下方半圓上的任意一點,連接AB交CD于點G,連接CB交AE于點H.
(1)∠ABC= ;
(2)證明:△CFH∽△CBG;
(3)若弧DB為半圓的三分之一,把∠AOC繞著點O旋轉(zhuǎn),使點C、O、B在一直線上時,如圖2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1,菱形ABCD的頂點A,D在直線上,∠BAD=60°,以點A為旋轉(zhuǎn)中心將菱形ABCD順時針旋轉(zhuǎn)α(0°<α<30°),得到菱形AB′C′D′,B′C′交對角線AC于點M,C′D′交直線l于點N,連接MN.
(1)當(dāng)MN∥B′D′時,求α的大。
(2)如圖2,對角線B′D′交AC于點H,交直線l與點G,延長C′B′交AB于點E,連接EH.當(dāng)△HEB′的周長為2時,求菱形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一矩形OABC放在平面直角坐標(biāo)系中,O為原點,點B、C分別在x軸、y軸上,點A(4,3),點D為線段OC上一動點,將△BOD沿BD翻折,點O落在點E處,連接CE,則CE的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形OABC如圖放置,O為原點,若點A的坐標(biāo)是(﹣1,2),點B的坐標(biāo)是(2,),則點C的坐標(biāo)是( )
A. (4,2)B. (2,4)C. (,3)D. (3,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com