【題目】如圖,在△OAB中,∠AOB90°,AO2,BO4.將△OAB繞頂點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)到△OA1B1處,此時(shí)線段OB1AB的交點(diǎn)D恰好為線段AB的中點(diǎn),線段A1B1OA交于點(diǎn)E,則圖中陰影部分的面積__

【答案】

【解析】

根據(jù)題意求出△AOB的面積,在根據(jù)直角三角形斜邊中線的性質(zhì)得出ODBDAD,從而判斷出ODA=∠OAD,再根據(jù)旋轉(zhuǎn)的性質(zhì)和勾股定理,得出A1OOE的長(zhǎng)度,再根據(jù)三角形面積公式計(jì)算求解即可.

如圖,

∵∠AOB90°,AO2,BO4,

SAOB×2×44,AB2,

∵∠AOB90°,點(diǎn)DAB中點(diǎn),

ODBDAD,

∴∠ODA=∠OAD,

∵將△OAB繞頂點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)到△OA1B1處,

∴∠B=∠B1,SAOB4,A1OAO2

∵∠B+OAD90°,

∴∠B1+AOD90°,

∴∠OEB190°,

4×2×OE

OE,

A1E,

∴圖中陰影部分的面積=××

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,中,,點(diǎn)從點(diǎn)出發(fā)沿方向勻速運(yùn)動(dòng),速度為1點(diǎn)上位于點(diǎn)右側(cè)的動(dòng)點(diǎn),點(diǎn)上的動(dòng)點(diǎn),在運(yùn)動(dòng)過程中始終保持,cm.過,當(dāng)點(diǎn)與點(diǎn)重合時(shí)點(diǎn)停止運(yùn)動(dòng).設(shè)的而積為,點(diǎn)的運(yùn)動(dòng)時(shí)問為,的函數(shù)關(guān)系如圖②所示:

1=_______,=_______;

2)設(shè)四邊形的面積為,求的最大值;

3)是否存在的值,使得以,為頂點(diǎn)的三角形與相似?如果存在,求的值;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小宇在學(xué)習(xí)解直角三角形的知識(shí)后,萌生了測(cè)量他家對(duì)面位于同一水平面的樓房高度的想法,他站在自家C處測(cè)得對(duì)面樓房底端B的俯角為45°,測(cè)得對(duì)面樓房頂端A的仰角為30°,并量得兩棟樓房間的距離為9米,請(qǐng)你用小宇測(cè)得的數(shù)據(jù)求出對(duì)面樓房AB的高度.(結(jié)果保留到整數(shù),參考數(shù)據(jù):1.4,1.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+ca0)交x軸于點(diǎn)A2,0),B(﹣3,0),交y軸于點(diǎn)C,且經(jīng)過點(diǎn)d(﹣6,﹣6),連接AD,BD

1)求該拋物線的函數(shù)關(guān)系式;

2)若點(diǎn)MX軸上方的拋物線上一點(diǎn),能否在點(diǎn)A左側(cè)的x軸上找到另一點(diǎn)N,使得△AMN與△ABD相似?若相似,請(qǐng)求出此時(shí)點(diǎn)M、點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由;

3)若點(diǎn)P是直線AD上方的拋物線上一動(dòng)點(diǎn)(不與AD重合),過點(diǎn)PPQy軸交直線AD于點(diǎn)Q,以PQ為直徑作E,則E在直線AD上所截得的線段長(zhǎng)度的最大值等于   .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解全校學(xué)生對(duì)電視節(jié)目的喜愛情況(新聞、體育、動(dòng)畫、娛樂、戲曲),從全校學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息,解答下列問題:

(1)這次被調(diào)查的學(xué)生共有多少人?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校約有1500名學(xué)生,估計(jì)全校學(xué)生中喜歡娛樂節(jié)目的有多少人?

(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學(xué)中選取2,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018無錫市體育中考男生項(xiàng)目分為速度耐力類、力量類和靈巧類,每位考生只能在三類中各選一項(xiàng)進(jìn)行考試.其中速度耐力類項(xiàng)目有:50米跑、800米跑、50米游泳;力量類項(xiàng)目有:擲實(shí)心球、引體向上;靈巧類項(xiàng)目有:30秒鐘跳繩、立定跳遠(yuǎn)、俯臥撐、籃球運(yùn)球.男生小明“50米跑是強(qiáng)項(xiàng),他決定必選,其它項(xiàng)目在平時(shí)測(cè)試中成績(jī)完全相同,他決定隨機(jī)選擇.

(1)請(qǐng)用畫樹狀圖或列表的方法求小明50米跑、引體向上和立定跳遠(yuǎn)’”的概率;

(2)小明所選的項(xiàng)目中有立定跳遠(yuǎn)的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過、兩點(diǎn),該拋物線的頂點(diǎn)為C

1)求此拋物線和直線的解析式;

2)設(shè)直線與該拋物線的對(duì)稱軸交于點(diǎn)E,在射線上是否存在一點(diǎn)M,過Mx軸的垂線交拋物線于點(diǎn)N,使點(diǎn)M、N、C、E是平行四邊形的四個(gè)頂點(diǎn)?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由;

3)設(shè)點(diǎn)P是直線下方拋物線上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo),并求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了扎實(shí)推進(jìn)精準(zhǔn)扶貧工作,某市出臺(tái)了民生兜底、醫(yī)保脫貧、教育教助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了25種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為類貧困戶。為檢查幫扶措施是否落實(shí),隨機(jī)抽取了若干貧困戶進(jìn)行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)圖中信息回答下面的問題:

1)本次抽樣調(diào)查了多少戶貧困戶;

2)抽查了多少戶類貧困戶?并補(bǔ)全統(tǒng)計(jì)圖;

3)若該地共有1300戶貧困戶,請(qǐng)估計(jì)至少得到4項(xiàng)幫扶措施的大約有多少戶;

4)為更好地做好精準(zhǔn)扶貧工作,現(xiàn)準(zhǔn)備從類貧困戶中的甲、乙、丙、丁四戶中隨機(jī)選取兩戶進(jìn)行重點(diǎn)幫扶,請(qǐng)用樹狀圖或列表法求出恰好選中甲和丁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,AEBDEOEED=1:3.AE,BD=(  )

A.B.C.4D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案