【題目】某射擊隊(duì)有甲、乙兩名射手,他們各自射擊7次,射中靶的環(huán)數(shù)記錄如下:

甲:8,8,89,6,89

乙:10,7,8,85,108

1)分別求出甲、乙兩名射手打靶環(huán)數(shù)的平均數(shù)、眾數(shù)、中位數(shù);

2)如果要選擇一名成績比較穩(wěn)定的射手,代表射擊隊(duì)參加比賽,應(yīng)如何選擇?為什么?

【答案】1)甲的平均數(shù)為8,乙的平均數(shù)為8;甲的眾數(shù)為8,乙的眾數(shù)為8;甲的中位數(shù)為8,乙的中位數(shù)為8.(2)選擇甲代表射擊隊(duì)參加比賽,理由見解析.

【解析】

1)根據(jù)平均數(shù)的計(jì)算公式、眾數(shù)以及中位數(shù)的定義分別進(jìn)行解答即可;

2)先求出甲和乙的方差,再根據(jù)方差的定義,方差越小數(shù)據(jù)越穩(wěn)定,即可得出答案.

1)甲的平均數(shù)為:8+8+8+9+6+8+9)=8,

乙的平均數(shù)為:10+7+8+8+5+l0+8)=8

甲的眾數(shù)為8,乙的眾數(shù)為8

甲的中位數(shù)為8,乙的中位數(shù)為8

2S2 [4882+2982+682],

S2 [3882+21082+782+582],

S2S2

∴選擇甲代表射擊隊(duì)參加比賽.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺(tái)污水處理設(shè)備.現(xiàn)有A,B兩種型號的設(shè)備,經(jīng)過市場調(diào)查,購買一臺(tái)型設(shè)備比購買一臺(tái)型設(shè)備多花費(fèi)2萬元,購買2臺(tái)A型設(shè)備比購買3臺(tái)B型設(shè)備少花費(fèi)6萬元.

1)購買一臺(tái)A型設(shè)備、購買一臺(tái)B型設(shè)備各需要多少萬元;

2)治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸,y軸分別交于點(diǎn)AB,將沿過點(diǎn)A的直線折疊,使點(diǎn)B落在x軸的負(fù)半軸上,記作點(diǎn)C,折痕與y軸交于點(diǎn)D,則點(diǎn)D的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算或方程:

13x4315360;

23﹣(2);

3(用代入法);

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成推理過程

1)如圖,已知∠1=2,∠B=C,求證:ABCD

證明∵∠1=2(已知),

且∠1=CGD(  )

∴∠2=CGD(     )

CEBF(  ),

C=BFD(  )

又∵∠B=C(已知),

BFD=B(  ),

ABCD(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C是以點(diǎn)O為圓心,AB為直徑的半圓上的動(dòng)點(diǎn)(點(diǎn)C不與點(diǎn)A,B重合),AB=4.設(shè)弦AC的長為x,△ABC的面積為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB= ,D是線段BC上的一個(gè)動(dòng)點(diǎn),以AD為直徑畫⊙O分別交AB、AC于E、F,連接EF,則線段EF長度的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1

2

32a3b

4+1﹣(0|1|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)使關(guān)于的分式方程的解為正數(shù),且使關(guān)于的不等式組的解集為.則符合條件的所有整數(shù)的和為( )

A. 8B. 10C. 12D. 16

查看答案和解析>>

同步練習(xí)冊答案