已知在銳角△ABC中,AB=ACBC=4,DAC邊上一點,ADDC=3∶1,sinA=,求(1)CD的長;(2)△BCD的面積.

 

答案:
解析:

解:(1)BBE^ACE,解方程13x2-25x+12=0,得x1=1,x2=,∵ △ABC是銳角三角形,當sinA=1時,ÐA=90°,不合題意,舍去,sinA=,在Rt△ABE中,sinA=,得BE=12k,AB=13k,AE=5k,∵ AB=AC,CE=8k,由BC=4,得k=,AB==ACBE=,CD=AC=;(2)SABC=ACBE=6,BCD的面積=

 


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

29、如圖,已知在銳角△ABC中,∠ABC=2∠C,∠ABC的平分線與AD垂直于D,求證:AC=2BD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c.如圖所示,過C作CD⊥AB,垂足為點D,則cosA=
ADb
,即AD=bcosA,所以BD=c-AD=c-bcosA.
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2,b2-b2cos2A=a2-(c-bcosA)2,
整理得a2=b2+c2-2bccosA.           ①
同理可得b2=a2+c2-2accosB.         ②
C2=a2+b2-2abcosC.                 ③
這個結(jié)論就是著名的余弦定理.在以上三個等式中有六個元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個元素,可求出其余的另外三個元素.
(1)在銳角△ABC中,已知∠A=60°,b=5,c=7,試利用①,②,③求出a,∠B,∠C,的數(shù)值;
(2)已知在銳角△ABC中,三邊a,b,c分別是7,8,9,求出∠A,∠B,∠C的度數(shù).(保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、已知在銳角△ABC中,∠A=50°,AB>BC.則∠B的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知在銳角△ABC中,I是△ABC三條角平分線的交點,IG⊥BC于G,試比較∠1與∠2的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知在銳角△ABC中,∠ABC=2∠C,∠ABC的平分線與AD垂直于D,求證:AC=2BD.

查看答案和解析>>

同步練習冊答案