【題目】閱讀理解并解答:

(1)我們把多項式叫做完全平方式,在運用完全平方公式進行因式分解時,關鍵是判斷這個多項式是不是一個完全平方式.同樣地,把一個多項式進行部分因式分解可以來解決求代數(shù)式值的最大(或最小)值問題.

例如:①

是非負數(shù),即0

+2≥2

則這個代數(shù)式的最小值是_______,這時相應的的值是_______.

=

=

=

=

是非負數(shù),即0

-7-7

則這個代數(shù)式的最小值是____,這時相應的的值是______.

(2)仿照上述方法求代數(shù)式 的最大(或最小)值,并寫出相應的的值.

【答案】(1)①2;-1;②-7;2(2)這個代數(shù)式的最大值是59,這時相應的的值是- 7

【解析】

根據(jù)例題求解即可,要讀懂例題,根據(jù)完全平方式的非負性,計算即可.

(1)

所以當x=-1時,取得最小值2

=

所以當x=2時,取得最小值-7

2;-1;②-7;2

(2)

=

=

=

=

是非負數(shù),即

∴這個代數(shù)式的最大值是59,這時相應的的值是- 7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖ABDC,AF平分∠BAE,DF平分∠CDE,且∠AFD比∠AED2倍小10°,則∠AED的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題10分)甲、乙兩家文具商店出售同樣的毛筆和宣紙.毛筆每支18元,宣紙每張2元.甲商店推出的優(yōu)惠方法為買一支毛筆送兩張宣紙;乙商店的優(yōu)惠方法為按總價的九折優(yōu)惠.小麗想購買5支毛筆,宣紙x張(x≥5).

1)若到甲商店購買,應付______ 元(用代數(shù)式表示);

2)若到乙商店購買,應付______ 元(用代數(shù)式表示);

3)若小麗要買宣紙10張,應選擇哪家文具商店?若買100張呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD為⊙O的直徑,CDAB,垂足為點F,AOBC,垂足為點E,CE=2

1)求AB的長;

2)求⊙O的半徑.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923086297137152/1923946164551680/STEM/edc8c851f08548f08f9e61b4dab2d43e.png]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,∠ACB=90°,AC=8,cosA=,DAB邊的中點,EAC邊上一點,聯(lián)結DE,過點DDFDEBC邊于點F,聯(lián)結EF

1)如圖1,當DEAC時,求EF的長;

2)如圖2,當點EAC邊上移動時,∠DFE的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出∠DFE的正切值;

3)如圖3,聯(lián)結CDEF于點Q,當CQF是等腰三角形時,請直接寫出BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,ABAC,對角線ACBD相交于點O,將直線AC繞點O順時針旋轉一個角度αα≤90°),分別交線段BC,AD于點E,F,連接BF

1)如圖1,在旋轉的過程中,求證:OEOF;

2)如圖2,當旋轉至90°時,判斷四邊形ABEF的形狀,并證明你的結論;

3)若AB1,BC,且BFDF,求旋轉角度α的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學七、八年級各選派10名選手參加學校舉辦的愛我荊門知識競賽,計分采用10分制,選手得分均為整數(shù),成績達到6分或6分以上為合格,達到9分或10分為優(yōu)秀.這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分的選手人數(shù)分別為a,b

隊別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

七年級

6.7

m

3.41

90%

n

八年級

7.1

7.5

1.69

80%

10%

1)請依據(jù)圖表中的數(shù)據(jù),求a,b的值;

2)直接寫出表中的mn的值;

3)有人說七年級的合格率、優(yōu)秀率均高于八年級,所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于任意有理數(shù)a,b,定義運算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.

(1)求(﹣2)⊙3的值;

(2)對于任意有理數(shù)m,n,請你重新定義一種運算“”,使得5⊕3=20,寫出你定義的運算:m⊕n=   (用含m,n的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有一個內角為90°,且對角線相等的四邊形稱為準矩形.

(1)①如圖1,準矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD=   ;

②如圖2,直角坐標系中,A(0,3),B(5,0),若整點P使得四邊形AOBP是準矩形,則點P的坐標是   ;(整點指橫坐標、縱坐標都為整數(shù)的點)

(2)如圖3,正方形ABCD中,點E、F分別是邊AD、AB上的點,且CF⊥BE,求證:四邊形BCEF是準矩形;

(3)已知,準矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當△ADC為等腰三角形時,請直接寫出這個準矩形的面積是   

查看答案和解析>>

同步練習冊答案