【題目】閱讀理解并解答:
(1)我們把多項式及叫做完全平方式,在運用完全平方公式進行因式分解時,關鍵是判斷這個多項式是不是一個完全平方式.同樣地,把一個多項式進行部分因式分解可以來解決求代數(shù)式值的最大(或最小)值問題.
例如:①
∵是非負數(shù),即≥0
∴+2≥2
則這個代數(shù)式的最小值是_______,這時相應的的值是_______.
②
=
=
=
=
∵是非負數(shù),即≥0
∴-7≥-7
則這個代數(shù)式的最小值是____,這時相應的的值是______.
(2)仿照上述方法求代數(shù)式 的最大(或最小)值,并寫出相應的的值.
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖AB∥DC,AF平分∠BAE,DF平分∠CDE,且∠AFD比∠AED的2倍小10°,則∠AED的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題10分)甲、乙兩家文具商店出售同樣的毛筆和宣紙.毛筆每支18元,宣紙每張2元.甲商店推出的優(yōu)惠方法為買一支毛筆送兩張宣紙;乙商店的優(yōu)惠方法為按總價的九折優(yōu)惠.小麗想購買5支毛筆,宣紙x張(x≥5).
(1)若到甲商店購買,應付______ 元(用代數(shù)式表示);
(2)若到乙商店購買,應付______ 元(用代數(shù)式表示);
(3)若小麗要買宣紙10張,應選擇哪家文具商店?若買100張呢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CD為⊙O的直徑,CD⊥AB,垂足為點F,AO⊥BC,垂足為點E,CE=2.
(1)求AB的長;
(2)求⊙O的半徑.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923086297137152/1923946164551680/STEM/edc8c851f08548f08f9e61b4dab2d43e.png]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,AC=8,cosA=,D是AB邊的中點,E是AC邊上一點,聯(lián)結DE,過點D作DF⊥DE交BC邊于點F,聯(lián)結EF.
(1)如圖1,當DE⊥AC時,求EF的長;
(2)如圖2,當點E在AC邊上移動時,∠DFE的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出∠DFE的正切值;
(3)如圖3,聯(lián)結CD交EF于點Q,當△CQF是等腰三角形時,請直接寫出BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB⊥AC,對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉一個角度α(0°<α≤90°),分別交線段BC,AD于點E,F,連接BF.
(1)如圖1,在旋轉的過程中,求證:OE=OF;
(2)如圖2,當旋轉至90°時,判斷四邊形ABEF的形狀,并證明你的結論;
(3)若AB=1,BC=,且BF=DF,求旋轉角度α的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學七、八年級各選派10名選手參加學校舉辦的“愛我荊門”知識競賽,計分采用10分制,選手得分均為整數(shù),成績達到6分或6分以上為合格,達到9分或10分為優(yōu)秀.這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分的選手人數(shù)分別為a,b.
隊別 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
七年級 | 6.7 | m | 3.41 | 90% | n |
八年級 | 7.1 | 7.5 | 1.69 | 80% | 10% |
(1)請依據(jù)圖表中的數(shù)據(jù),求a,b的值;
(2)直接寫出表中的m,n的值;
(3)有人說七年級的合格率、優(yōu)秀率均高于八年級,所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于任意有理數(shù)a,b,定義運算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.
(1)求(﹣2)⊙3的值;
(2)對于任意有理數(shù)m,n,請你重新定義一種運算“⊕”,使得5⊕3=20,寫出你定義的運算:m⊕n= (用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一個內角為90°,且對角線相等的四邊形稱為準矩形.
(1)①如圖1,準矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD= ;
②如圖2,直角坐標系中,A(0,3),B(5,0),若整點P使得四邊形AOBP是準矩形,則點P的坐標是 ;(整點指橫坐標、縱坐標都為整數(shù)的點)
(2)如圖3,正方形ABCD中,點E、F分別是邊AD、AB上的點,且CF⊥BE,求證:四邊形BCEF是準矩形;
(3)已知,準矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當△ADC為等腰三角形時,請直接寫出這個準矩形的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com