【題目】我們定義:如圖1,在ABC看,把AB點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時(shí),我們稱(chēng)A'B'C'ABC旋補(bǔ)三角形”,AB'C'B'C'上的中線(xiàn)AD叫做ABC旋補(bǔ)中線(xiàn),點(diǎn)A叫做旋補(bǔ)中心”.

特例感知:

(1)在圖2,圖3中,AB'C'ABC旋補(bǔ)三角形”,ADABC旋補(bǔ)中線(xiàn)”.

①如圖2,當(dāng)ABC為等邊三角形時(shí),ADBC的數(shù)量關(guān)系為AD=   BC;

②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為   

猜想論證:

(2)在圖1中,當(dāng)ABC為任意三角形時(shí),猜想ADBC的數(shù)量關(guān)系,并給予證明.

【答案】(1)①;4;(2) AD=BC.

【解析】試題分析:(1)①首先證明△ADB′是含有30°是直角三角形,可得AD=AB′即可解決問(wèn)題;②首先證明△BAC≌△B′AC′,根據(jù)直角三角形斜邊中線(xiàn)定理即可解決問(wèn)題;
(2)如圖1中,延長(zhǎng)AD到Q,使得AD=DQ,連接B′Q,C′Q,根據(jù)∠QB′A=∠BAC,QB′=AC′=AC,AB′=AB,即可得到△AQB′≌△BAC,即可解決問(wèn)題.

試題解析:

解:(1)①如圖2,當(dāng)ABC為等邊三角形時(shí),ADBC的數(shù)量關(guān)系為AD=BC;

理由:∵△ABC是等邊三角形,

AB=BC=AC=AB′=AC′,

DB′=DC′,

ADB′C′,

∵∠BAC=60°,BAC+B′AC′=180°,

∴∠B′AC′=120°,

∴∠B′=C′=30°,

AD=AB′=BC,

故答案為

②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為4.

理由:∵∠BAC=90°,BAC+B′AC′=180°,

∴∠B′AC′=BAC=90°,

AB=AB′,AC=AC′,

∴△BAC≌△B′AC′,

BC=B′C′,

B′D=DC′,

AD=B′C′=BC=4,

故答案為4.

(2)猜想AD=BC

證明:如圖,延長(zhǎng)AD至點(diǎn)Q,則DQB'≌△DAC',

QB'=AC',QB'AC',

∴∠QB'A+B'AC'=180°,

∵∠BAC+B'AC'=180°,

∴∠QB'A=BAC,

又由題意得到QB'=AC'=AC,AB'=AB,

∴△AQB'≌△BCA,

AQ=BC=2AD,

即AD=BC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一列有理數(shù)-12,-3,4,-5,6……,如圖所示有序排列.根據(jù)圖中的排列規(guī)律可知,1” 中峰頂?shù)奈恢茫?/span>C的位置)是有理數(shù)4,那么,5”C 的位置是有理數(shù) ,2017應(yīng)排在AE 的位置.其中兩個(gè)填空依次為

A.24 , AB.24, AC.25, ED.25, E

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形中,既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校計(jì)劃組織全校1500名師生外出參加集體活動(dòng).經(jīng)過(guò)研究,決定租用當(dāng)?shù)刈廛?chē)公司一共60、兩種型號(hào)客車(chē)作為交通工具.

下表是租車(chē)公司提供給學(xué)校有關(guān)兩種型號(hào)客車(chē)的載客量和租金信息:

型號(hào)

載客量

租金單價(jià)

30

400

20

300

注:載客量指的是每輛客車(chē)最多可載該校師生的人數(shù).

學(xué)校租用型號(hào)客車(chē)輛,租車(chē)總費(fèi)用為元.

(1)的函數(shù)解析式,請(qǐng)直接寫(xiě)出的取值范圍;

(2)若要使租車(chē)總費(fèi)用不超過(guò)22000元,一共有幾種租車(chē)方案?并結(jié)合函數(shù)性質(zhì)說(shuō)明哪種租車(chē)方案最省錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,小王在校園上的A處正面觀測(cè)一座教學(xué)樓墻上的大型標(biāo)牌,測(cè)得標(biāo)牌下端D處的仰角為30°,然后他正對(duì)大樓方向前進(jìn)5m到達(dá)B處,又測(cè)得該標(biāo)牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標(biāo)牌的上端與樓房的頂端平齊.求此標(biāo)牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點(diǎn),對(duì)于四邊形EFGH的形狀,某班學(xué)生在一次數(shù)學(xué)活動(dòng)課中,通過(guò)動(dòng)手實(shí)踐,探索出如下結(jié)論,其中錯(cuò)誤的是(

A.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且AC=BD時(shí),四邊形EFGH為菱形

B.當(dāng)E,F(xiàn),G,H是各邊中點(diǎn),且ACBD時(shí),四邊形EFGH為矩形

C.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH可以為平行四邊形

D.當(dāng)E,F(xiàn),G,H不是各邊中點(diǎn)時(shí),四邊形EFGH不可能為菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件50元.當(dāng)售價(jià)為每件70元時(shí),每星期可賣(mài)出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣(mài)出20件.在確保盈利的前提下,解答下列問(wèn)題:

1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫(xiě)出yx的函數(shù)關(guān)系式,并求出自變量x的取值范圍;

2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A是反比例函數(shù)y1=x0圖象上的任意一點(diǎn),過(guò)點(diǎn)A ABx軸,交另一個(gè)比例函數(shù)y2=k0x0)的圖象于點(diǎn)B

1)若SAOB的面積等于3,則k=_____;

2)當(dāng)k=﹣8時(shí),若點(diǎn)A的橫坐標(biāo)是1,求∠AOB的度數(shù);

3)若不論點(diǎn)A在何處,反比例函數(shù)y2=k0,x0圖象上總存在一點(diǎn)D,使得四邊形AOBD為平行四邊形,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合實(shí)踐

問(wèn)題情景:某綜合實(shí)踐小組進(jìn)行廢物再利用的環(huán)保小衛(wèi)士行動(dòng). 他們準(zhǔn)備用廢棄的宣傳單制作裝垃圾的無(wú)蓋紙盒.

操作探究:

⑴若準(zhǔn)備制作一個(gè)無(wú)蓋的正方體形紙盒,如圖1,下面的哪個(gè)圖形經(jīng)過(guò)折疊能?chē)?/span>無(wú)蓋正方體形紙盒?

⑵如圖2是小明的設(shè)計(jì)圖,把它折成無(wú)蓋正方體形紙盒后與字相對(duì)的是哪個(gè)字?

⑶如圖3,有一張邊長(zhǎng)為20cm的正方形廢棄宣傳單,小華準(zhǔn)備將其四角各剪去一個(gè)小正方形,折成無(wú)蓋長(zhǎng)方體形紙盒.

①請(qǐng)你在圖3中畫(huà)出示意圖,用實(shí)線(xiàn)表示剪切線(xiàn),虛線(xiàn)表示折痕.

②若四角各剪去了一個(gè)邊長(zhǎng)為xcm的小正方形,用含x的代數(shù)式表示這個(gè)紙盒的高為 cm,底面積為 cm2,當(dāng)小正方形邊長(zhǎng)為4cm時(shí),紙盒的容積為 cm3.

查看答案和解析>>

同步練習(xí)冊(cè)答案