【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為對(duì)角線OB的中點(diǎn),反比例函數(shù)(x0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D,且與AB、BC分別交于E、F兩點(diǎn),若四邊形BEDF的面積為1,則k的值為_____.

【答案】

【解析】

連接OFEO,如圖,根據(jù)反比例函數(shù)系數(shù)k的幾何意義可得△OCF、△OAE、矩形OABC的面積與|k|的關(guān)系,進(jìn)而可列出關(guān)于k的方程,解方程即得答案.

解:連接OFEO,∵點(diǎn)D為對(duì)角線OB的中點(diǎn),四邊形BEDF的面積為1

SBDFSODF,SBDESODE,

∴四邊形FOED的面積為1,

由題意得:E、F、D位于反比例函數(shù)圖象上,且由于函數(shù)圖象在第一象限,

k0,∴SOCFSOAE,

過點(diǎn)DDGy軸于點(diǎn)G,作DNx軸于點(diǎn)N,則S矩形ONDGk,

又∵D為矩形ABCO對(duì)角線的交點(diǎn),則S矩形ABCO4S矩形ONDG4k,

++24k,解得:k

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點(diǎn),OA、OB分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(03),∠ABO30°,將△ABC沿AB所在直線對(duì)折后,點(diǎn)C落在點(diǎn)D處,則點(diǎn)D的坐標(biāo)為(  )

A. (,)B. (2,)C. ()D. (,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】,中,,連接,中點(diǎn),連接

1)如圖1,若三點(diǎn)在同一直線上,,已知,求線段的長;

2)如圖2,若,求證:為等腰直角三角形;

3)如圖3,若,請(qǐng)判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:直線AB與雙曲線y=點(diǎn)交于AB兩點(diǎn),直線ABx、y坐標(biāo)軸分別交于C、D兩點(diǎn),連接OA,若OA2tanAOC=,B(3m)

1)求一次函數(shù)與反比例函數(shù)解析式;

2)若點(diǎn)F是點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn),求△ABF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,反比例函數(shù)yx0,k0圖象上的兩點(diǎn)(n3n)、(n+12n).

1)求n的值;

2)如圖,直線l為正比例函數(shù)yx的圖象,點(diǎn)A在反比例函數(shù)yx0,k0)的圖象上,過點(diǎn)AABl于點(diǎn)B,過點(diǎn)BBCx軸于點(diǎn)C,過點(diǎn)AADBC于點(diǎn)D,記△BOC的面積為S1,△ABD的面積為S2,求S1S2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,平行四邊形ACDE的一邊在直徑AB上,點(diǎn)E在⊙O上.

1)如圖1,當(dāng)點(diǎn)D在⊙O上時(shí),請(qǐng)你僅用無刻度的直尺在AB上取點(diǎn)P,使DPABP

2)如圖2,當(dāng)點(diǎn)D在⊙O內(nèi)時(shí),請(qǐng)你僅用無刻度的直尺在AB上取點(diǎn)Q,使EQABQ

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,E,F是對(duì)角線BD上的兩點(diǎn), 如果添加一個(gè)條件使ABE≌△CDF,則添加的條件不能是( 。

A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABACBC6,EAC邊上的點(diǎn)且AE2EC,點(diǎn)DBC邊上且滿足BDDE,設(shè)BDy,SABCx,則yx的函數(shù)關(guān)系式為(  )

A.yx2+B.yx2+

C.yx2+2D.yx2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知半圓O,點(diǎn)C、D在弧AB上,連接AD、BDCD,∠BDC+2ABD90°.

1)如圖1,求證:DADC;

2)如圖2,作OEBD交半圓O于點(diǎn)E,連接AEBD于點(diǎn)F,連接AC,求證:∠DFA=∠DAC+DAE;

3)如圖3,在(2)的條件下,設(shè)ACBD于點(diǎn)GFG1,AG5,求半圓O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案