如圖,在梯形ABCD中,AD∥BC,AD=3,CD=5,BC=10,梯形的高為4,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段BC以每秒2個(gè)單位長(zhǎng)度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從點(diǎn)C出發(fā)沿線段CD以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)D運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒
(1)直接寫出梯形ABCD的中位線長(zhǎng);
(2)當(dāng)MN∥AB時(shí),求t的值;
(3)試探究:t為何值時(shí),△CMN為等腰三角形?

【答案】分析:(1)直接利用梯形中位線的定理求出即可;
(2)平移梯形的一腰,根據(jù)平行四邊形的性質(zhì)和相似三角形的性質(zhì)求解;
(3)因?yàn)槿呏,每(jī)蓷l邊都有相等的可能,所以應(yīng)考慮三種情況.結(jié)合路程=速度×時(shí)間求得其中的有關(guān)的邊,運(yùn)用等腰三角形的性質(zhì)和解直角三角形的知識(shí)求解.
解答:解:(1)∵AD=3,BC=10,
∴梯形ABCD的中位線長(zhǎng)為:(3+10)÷2=6.5;

(2)如圖1,過(guò)D作DG∥AB交BC于G點(diǎn),則四邊形ADGB是平行四邊形.
∵M(jìn)N∥AB,
∴MN∥DG,
∴BG=AD=3.
∴GC=10-3=7.
由題意知,當(dāng)M、N運(yùn)動(dòng)到t秒時(shí),CN=t,CM=10-2t.
∵DG∥MN,
∴△MNC∽△GDC.
=
=
解得,t=

(3)分三種情況討論:
①當(dāng)NC=MC時(shí),如圖2,即t=10-2t,
解得:t=;
②當(dāng)MN=NC時(shí),如圖3,過(guò)N作NE⊥MC于E.
由等腰三角形三線合一性質(zhì)得
EC=MC=(10-2t)=5-t.
在Rt△CEN中,cosC==,
又在Rt△DHC中,cosC==,
=
解得:t=;
③當(dāng)MC=MN時(shí),如圖4,過(guò)M作MF⊥CN于F點(diǎn),F(xiàn)C=NC=t.
∵∠C=∠C,∠MFC=∠DHC=90°,
∴△MFC∽△DHC,
=
=,
解得:t=
綜上所述,當(dāng)t=、t=或t=時(shí),△MNC為等腰三角形.
點(diǎn)評(píng):此題主要考查了四邊形綜合應(yīng)用以及相似三角形的判定與性質(zhì)和銳角三角函數(shù)等知識(shí),注意梯形中常見的輔助線:平移一腰、作兩條高.構(gòu)造等腰三角形的時(shí)候的題目,注意分情況討論.此題的知識(shí)綜合性較強(qiáng),能夠從中發(fā)現(xiàn)平行四邊形、等腰三角形等,根據(jù)它們的性質(zhì)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長(zhǎng)為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案