數(shù)學(xué)公式+數(shù)學(xué)公式=0,求x,y的值.

解:+=0,

①+②得4x=4,
x=1,把x=1代入①得1+2y=0
y=-,
解得
分析:根據(jù)算術(shù)平方根的和為0,可得算術(shù)平方根同時為0,根據(jù)解二元一次方程組,可得答案.
點(diǎn)評:本題考查了算術(shù)平方根,算術(shù)平方根的和為0,可得算術(shù)平方根同時為0,加減銷元解方程組.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y1=-
3
3
x+
3
與x、y軸分別交于A、B兩點(diǎn),拋物線y2=-
3
3
x2+bx+c
精英家教網(wǎng)過A、B兩點(diǎn),
①求拋物線的解析式;
②在拋物線上是否存在一點(diǎn)P(除點(diǎn)A外),使點(diǎn)P關(guān)于直線y1=-
3
3
x+
3
的對稱點(diǎn)Q恰好在x軸上?若不存在,請說明理由;若存在,求出點(diǎn)P的坐標(biāo),并求得此時四邊形APBQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠BAC=90°,AB=AC=4cm,實(shí)驗(yàn)操作:把一等腰直角三角尺45°角的頂點(diǎn)(記為點(diǎn)D),放在BC邊上滑動(不與B,C重合),讓該角的一邊始終過點(diǎn)A,另一邊交AC于點(diǎn)E,選取運(yùn)動過程中的兩個瞬間,用量角器分別測出∠BDA與∠CED的大小,并填入下表:
  ∠BDA ∠CED
第一次測量結(jié)果    
第二次測量結(jié)果    
探索:(1)觀察實(shí)驗(yàn)結(jié)果,猜想∠BDA與∠CED的大小有何關(guān)系?并證明你的結(jié)論;
(2)設(shè)BD=x,AE=y,試求出y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)當(dāng)點(diǎn)D在BC邊上滑動時,△ADE能否成為等腰三角形?若能,求出點(diǎn)D的位置;若不能,請說明理由.(圖1供實(shí)驗(yàn)操作用,圖2備用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我市高新技術(shù)開發(fā)區(qū)的某公司,用480萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,并進(jìn)一步投入資金1520萬元購買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工.已知生產(chǎn)這種產(chǎn)品每件還需成本費(fèi)40元.經(jīng)過市場調(diào)查發(fā)現(xiàn):該產(chǎn)品的銷售單價,需定在200元到300元之間較為合理,銷售單價x元與年銷售量y萬件之間的變化可近似的看作是如下表所反映的一次函數(shù):
銷售單價x(元) 200 230 250
年銷售量y(萬件) 10 7 5
(1)請求出y與x間的函數(shù)關(guān)系式;并直接寫出自變量x的取值范圍;
(2)請說明投資的第一年,該公司是盈利還是虧損?若贏利,最大利潤是多少?若虧損,最少虧損多少?
(3)在(2)的前提下,即在第一年盈利最大或虧損最小時,第二年公司重新確定產(chǎn)品售價,能否使兩年共盈利達(dá)1790萬元,若能,求出第二年的產(chǎn)品售價;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在等邊△ABC中,點(diǎn)D是邊AC的中點(diǎn),點(diǎn)P是線段DC上的動點(diǎn)(點(diǎn)P與點(diǎn)C不重合),連接BP.將△ABP繞點(diǎn)P按順時針方向旋轉(zhuǎn)α角(0°<α<180°),得到△A1B1P,連接AA1,射線AA1分別交射線PB、射線B1B于點(diǎn)E、F.
(1)如圖1,當(dāng)0°<α<60°時,在α角變化過程中,△BEF與△AEP始終存在
 
關(guān)系(填“相似”或“全等”),并說明理由;
(2)如圖2,設(shè)∠ABP=β.當(dāng)60°<α<180°時,在α角變化過程中,是否存在△BEF與△AEP全等?若存在,求出α與β之間的數(shù)量關(guān)系;若不存在,請說明理由;
(3)如圖3,當(dāng)α=60°時,點(diǎn)E、F與點(diǎn)B重合.已知AB=4,設(shè)DP=x,△A1BB1的面積為S,求S關(guān)于x的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線C1:y1=-x2+2x.
(1)將拋物線C1先向右平移2個單位,再向上平移1個單位,得到拋物線C2,求拋物線C2的頂點(diǎn)P的坐標(biāo)及它的解析式.
(2)如果x軸上有一動點(diǎn)M,那么在兩條拋物線C1、C2上是否存在點(diǎn)N,使得以點(diǎn)O、P、M、N為頂點(diǎn)的四邊形是平行四邊形(OP為一邊)?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案