【題目】(8分)如圖,已知△ABC,AD平分∠BAC交BC于點D,BC的中點為M,ME∥AD,交BA的延長線于點E,交AC于點F.
(1)求證:AE=AF;
(2)求證:BE=(AB+AC).
【答案】(1)詳見解析;(2)詳見解析.
【解析】
試題分析:(1)根據(jù)角平分線的性質及平行線的性質易∠AEF=∠AFE,即可得AE=AF;(2)作CG∥EM,交BA的延長線于G,已知AC=AG,根據(jù)三角形中位線定理的推論證明BE=EG,再利用三角形的中位線定理即可證得結論.
試題解析:
(1)∵DA平分∠BAC,
∴∠BAD=∠CAD,
∵AD∥EM,
∴∠BAD=∠AEF,∠CAD=∠AFE,
∴∠AEF=∠AFE,
∴AE=AF.
(2)作CG∥EM,交BA的延長線于G.
∵EF∥CG,
∴∠G=∠AEF,∠ACG=∠AFE,
∵∠AEF=∠AFE,
∴∠G=∠ACG,
∴AG=AC,
∵BM=CM.EM∥CG,
∴BE=EG,
∴BE=BG=(BA+AG)=(AB+AC).
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解一元二次方程 x2+8x+7=0,則方程可變形為( )
A. (x-4)2=9B. (x+4)2=9C. (x-8)2=9D. (x+8)2=9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,點D是BC上一點,∠BAD=80°,AB=AD=DC,則∠C的大小為( )
A.50°
B.40°
C.20°
D.25°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我校學生會組織學生到距學校6千米的敬老院打掃衛(wèi)生,如圖所示,11、12分別表示步行和騎車同學前往目的地所走的路程y(千米)與所用時間x(分鐘)之間的函數(shù)圖象,求在距學校多遠處騎車的同學追上步行的同學,此時步行的同學走了多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于x,y定義一種新運算“*”:x*y=3x﹣2y,等式右邊是通常的減法和乘法運算,如2*5=3×2﹣2×5=﹣4,那么(x+1)*(x﹣1)≥5的解集是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學表達式:(1)﹣3<0(2)3x+5>0(3)x2﹣6(4)x=﹣2(5)y≠0(6)x≥50中,不等式的個數(shù)是()
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com