按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的個數(shù)是( 。
①△ABC與△DEF是位似圖形      ②△ABC與△DEF是相似圖形
③△ABC與△DEF的周長比為1:2  ④△ABC與△DEF的面積比為4:1.

A.1      B.2     C. 3      D. 4

C.

解析試題分析:根據(jù)位似性質得出①△ABC與△DEF是位似圖形,
②△ABC與△DEF是相似圖形,
∵將△ABC的三邊縮小的原來的,
∴△ABC與△DEF的周長比為2:1,
故③選項錯誤,
根據(jù)面積比等于相似比的平方,
∴④△ABC與△DEF的面積比為4:1.
故選C.
考點: 位似變換.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線AB、CD相交于點O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,AB⊥BD,CD⊥BD ,∠A+∠AEF=180°.以下是小貝同學證明CD∥EF的推理過程或理由,請你在橫線上補充完整其推理過程或理由.

證明:∵ AB⊥BD,CD⊥BD(已知),
∴ ∠ABD=∠CDB=90°(__________________).
∴ ∠ABD+∠CDB=180°.
∴ AB∥(_____)(____________________________).
∵ ∠A+∠AEF=180°(已知),
∴ AB∥EF(___________________________________).
∴ CD∥EF(___________________________________).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,在等邊△ABC中,BC=6,點D,E分別在AB,AC上,DE∥BC,將△ADE沿DE翻折后,點A落在點A′處.連結A A′并延長,交DE于點M,交BC于點N.如果點A′為MN的中點,那么△ADE的面積為( 。

A.B.3C.6D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖是小明設計用手電來測量某古城墻高度的示意圖,點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)平面鏡反射后剛好射到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,且測得AB=1.2米,BP=1.8米,PD=12米, 那么該古城墻的高度是(   )

A.6米 B.8米 C.18米 D.24米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖是我市幾個旅游景點的大致位置示意圖,如果用(0,0)表示新寧莨山的位置,用(1,5)表示隆回花瑤的位置,那么城市南山的位置可以表示為【   】

A.(2,1) B.(0,1) C.(﹣2,﹣1) D.(﹣2,1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

設邊長為2a的正方形的中心A在直線l上,它的一組對邊垂直于直線l,半徑為r的⊙O的圓心O在直線l上運動,點A、O間距離為d.
(1)如圖①,當r<a時,根據(jù)d與a、r之間關系,將⊙O與正方形的公共點個數(shù)填入下

表:(6分)

d、a、r之間關系
公共點的個數(shù)
d>a+r
 
d=a+r
 
a-r<d<a+r
 
d=a-r
 
d<a-r
 
所以,
當r<a時,⊙O與正方形的公共點的個數(shù)可能有         個;
(2)如圖②,當r=a時,根據(jù)d與a、r之間關系,將⊙O與正方形的公共點個數(shù)填入下表:(5分)
d、a、r之間關系
公共點的個數(shù)
d>a+r
 
d=a+r
 
a≤d<a+r
 
d<a
 

所以,當r=a時,⊙O與正方形的公共點個數(shù)可能有     個;
(3)如圖③,當⊙O與正方形有5個公共點時,試說明r=a;(5分)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標不可能是( 。

A.(6,0) B.(6,3)
C.(6,5) D.(4,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

下列四個三角形,與左圖中的三角形相似的是(   )

查看答案和解析>>

同步練習冊答案