【題目】如圖1,扇形的半徑為3,面積為,點(diǎn)是的中點(diǎn),連接,.
(1)求證:四邊形是菱形;
(2)如圖2,,繞點(diǎn)旋轉(zhuǎn),與,分別交于點(diǎn)(點(diǎn)與點(diǎn)均不重合),與交于兩點(diǎn).
①求的值;
②如圖2,連接,,若的度數(shù)是定值,則直接寫出的度數(shù);若不是,請說明理由.
【答案】(1)證明見解析;(2)①;②的度數(shù)是定值,為.
【解析】
(1)由扇形的面積得出∠AOB=120°,連接OC,證明與是等邊三角形,從而可得結(jié)論;
(2)①依據(jù)ASA證明,可得,從而可求出;
②根據(jù)已知條件可求出,由圓周角定理可得,再根據(jù)菱形的性質(zhì)求出∠ACB=120°,最后求出即可.
(1)證明:如圖,連接.
∵,
∴.
在扇形中,,
∵點(diǎn)是的中點(diǎn),.
∴與是等邊三角形,
∴.
∴四邊形是菱形.
(2)解:如圖,
①由(1)可知與是等邊三角形,
∴.
∵,
∴.
∴,
即.
又,
∴.
∴.
∴.
②的度數(shù)是定值,為.
∵,
,,
∴.
在菱形中,,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB為直徑,BC=CD,過點(diǎn)C作CE⊥AB于點(diǎn)E,CH⊥AD交AD的延長線于點(diǎn)H,連接BD交CE于點(diǎn)G.
(1)求證:CH是⊙O的切線;
(2)若點(diǎn)D為AH的中點(diǎn),求證:AD=BE;
(3)若sin∠DBA=,CG=5,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完全平方公式是初中數(shù)學(xué)的重要公式之一:,完全平方公式既可以用來進(jìn)行整式計算又可以用來進(jìn)行分解因式,在學(xué)習(xí)中芳芳同學(xué)發(fā)現(xiàn)也可以用完全平方公式進(jìn)行分解因式,;根據(jù)以上發(fā)現(xiàn)解決問題
(1)寫出一個上面相同的式子,并進(jìn)行分解因式;
(2)若,請用,表示,
(3)如圖在中,,,,延長至點(diǎn),使,求的長(參考上面提供的方法把結(jié)果進(jìn)行化簡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市明年的初中畢業(yè)升學(xué)考試,擬將“引體向上”作為男生體育考試的一個必考項(xiàng)目,滿分為10分.有關(guān)部門為提前了解明年參加初中畢業(yè)升學(xué)考試的男生的“引體向上”水平,在全市八年級男生中隨機(jī)抽取了部分男生,對他們的“引體向上”水平進(jìn)行測試,并將測試結(jié)果繪制成如下統(tǒng)計圖表(部分信息未給出):
請你根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
抽取的男生“引體向上”成績統(tǒng)計表
成績 | 人數(shù) |
0分 | 32 |
1分 | 30 |
2分 | 24 |
3分 | 11 |
4分 | 15 |
5分及以上 | m |
(1)填空:m= ,n= .
(2)求扇形統(tǒng)計圖中D組的扇形圓心角的度數(shù);
(3)目前該市八年級有男生3600名,請估計其中“引體向上”得零分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn),在直線上.拋物線與線段圍成封閉圖形(包括邊界),則內(nèi)的整點(diǎn)(橫、縱坐標(biāo)都為整數(shù))最多有( )
A.4個B.5個C.6個D.7個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求這個二次函數(shù)的關(guān)系解析式;
(2)求直線AC的函數(shù)解析式;
(3)點(diǎn)P是直線AC上方的拋物線上一動點(diǎn),是否存在點(diǎn)P,使△ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲盒中有標(biāo)號為1、2、4的牌子,乙盒中有標(biāo)號為1、2、3、4的牌子,兩個盒子均不透明,這些牌子除標(biāo)號外無其他差別.小勇從甲盒中隨機(jī)摸出一個牌子,標(biāo)號為a,小婷從乙盒中隨機(jī)摸出一個牌子,標(biāo)號為b,若a<b,則小勇獲勝;若a≥b,則小婷獲勝.
(1)求小勇獲勝的概率;
(2)若小勇摸出的牌子標(biāo)號為2,在不知道小婷標(biāo)號的情況下,他獲勝的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】磐是我國國帶的一種打擊樂器和禮器(如圖),據(jù)先秦文獻(xiàn)《呂氏春秋古樂篇》記載:堯命擊磐“以象上帝”“以致舞百獸”,描繪出一幅古老的原始社會的樂舞生活場景.20世紀(jì)70年代在山西夏縣出土了一件大石磐,上部有一穿孔,擊之聲音悅耳,經(jīng)測定,此磐據(jù)經(jīng)約4000年,屬于夏代的遺存,這是迄今發(fā)現(xiàn)最早的磐的實(shí)物.從正面看磐是一個多邊形圖案(如圖2),已知MN為地面,測得AB=30厘米,BC=20厘米,∠BCN=60°,∠ABC=95°,求磐的最高點(diǎn)A到地面MN的高度h.(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,≈1.73,結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠ABC=60°,對角線AC、BD相交于點(diǎn)O,將對角線AC所在的直線繞點(diǎn)O順時針旋轉(zhuǎn)角α(0°<α<90°)后得直線l,直線l與AD、BC兩邊分別相交于點(diǎn)E和點(diǎn)F.
(1)求證:△AOE≌△COF;
(2)當(dāng)α=30°時,求線段EF的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com