如圖所示,在△ABC中,BD是AC邊上的中線,BD⊥BC于B,∠ABC=120°.求證:AB=2BC.
分析:過點A作AE⊥BC,交CB的延長線于E,可根據(jù)平行線的判定得到AE∥BD,再根據(jù)中位線的性質(zhì)和含30度角的直角三角形的性質(zhì)即可證明AB=2BC.
解答:證明:過點A作AE⊥BC,交CB的延長線于E.
∵AE⊥BC,DB⊥BC,
∴AE∥BD,
∵AD=CD,
∴BD是△ACE的中位線,
∴BC=BE,
∵∠ABC=120°,
∴∠ABE=60°,
∴∠BAE=30°,
∴AB=2BE=2BC.
點評:考查了平行線的判定,三角形中位線的性質(zhì)和含30度角的直角三角形的性質(zhì),本題通過作輔助線將線段進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運(yùn)動(不包括點C),點P的運(yùn)動速度為2cm∕s;Q點在AC上從C點向點A運(yùn)動(不包括點A),運(yùn)動速度為5cm∕s,若點P、Q分別從B、C同時運(yùn)動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經(jīng)過多長時間后,△PCQ面積為15cm2

查看答案和解析>>

同步練習(xí)冊答案