【題目】已知:如圖,△ABC和△DBE均為等腰直角三角形.
(1)求證:AD=CE;
(2)猜想:AD和CE是否垂直?若垂直,請(qǐng)說(shuō)明理由;若不垂直,則只要寫出結(jié)論,不用寫理由.
【答案】
(1)解:∵△ABC和△DBE均為等腰直角三角形,
∴AB=BC,BD=BE,∠ABC=∠DBE=90°,
∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,
即∠ABD=∠CBE,
∴△ABD≌△CBE,
∴AD=CE.
(2)解:垂直.延長(zhǎng)AD分別交BC和CE于G和F,
∵△ABD≌△CBE,
∴∠BAD=∠BCE,
∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,
又∵∠BGA=∠CGF,
∴∠AFC=∠ABC=90°,
∴AD⊥CE.
【解析】(1)要證AD=CE,只需證明△ABD≌△CBE,由于△ABC和△DBE均為等腰直角三角形,所以易證得結(jié)論.(2)延長(zhǎng)AD,根據(jù)(1)的結(jié)論,易證∠AFC=∠ABC=90°,所以AD⊥CE.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰直角三角形的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題的逆命題一定成立的是 ( )
①對(duì)頂角相等; ②同位角相等,兩直線平行;③全等三角形的周長(zhǎng)相等;④面積相等的兩個(gè)三角形全等
A. ①②③ B. ①④ C. ②④ D. ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將多項(xiàng)式﹣5a2bc+3ab2﹣abc各項(xiàng)提公因式后,另一個(gè)因式是( 。
A.5ac﹣3ab+c
B.5bc﹣3b+c
C.﹣5ac+3b+c
D.﹣5bc+3b+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下說(shuō)法正確的是( )
A. 各邊都相等的多邊形是正多邊形
B. 到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上
C. 角的平分線就是角的對(duì)稱軸
D. 形狀相同的兩個(gè)三角形是全等三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在凸多邊形中, 四邊形有2條對(duì)角線, 五邊形有5條對(duì)角線, 經(jīng)過(guò)觀察、探索、歸納, 你認(rèn)為凸八邊形的對(duì)角線條數(shù)應(yīng)該是多少條? 簡(jiǎn)單扼要地寫出你的思考過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1=∠2,∠C=∠D,AC、BD交于E點(diǎn),下列結(jié)論中不正確的是( )
A.∠DAE=∠CBE
B.△DEA不全等于△CEB
C.CE=DE
D.△EAB是等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點(diǎn)。
(1)寫出點(diǎn)O到△ABC的三個(gè)頂點(diǎn)A、B、C的距離的大小關(guān)系并說(shuō)明理由;
(2)如果點(diǎn)M、N分別在線段AB、AC上移動(dòng),在移動(dòng)中保持AN=BM,請(qǐng)判斷△OMN的形狀,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程5x-2a+4=3x的解是負(fù)數(shù),則a的取值范圍是 ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列等式從左到右的變形是因式分解的是( 。
A.6a3b=3a2﹣2ab
B.(x+2)(x﹣2)=x2﹣4
C.2x2+4x﹣3=2x(x+2)﹣3
D.ax﹣ay=a(x﹣y)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com