如圖1,過(guò)△ABC的頂點(diǎn)A作高AD,將點(diǎn)A折疊到點(diǎn)D(如圖2),這時(shí)EF為折痕,且△BED和△CFD都是等腰三角形,再將△BED和△CFD沿它們各自的對(duì)稱(chēng)軸EH、FG折疊,使B、C兩點(diǎn)都與點(diǎn)D重合,得到一個(gè)矩形EFGH(如圖3),我們稱(chēng)矩形EFGH為△ABC的邊BC上的折合矩形.
(1)若△ABC的面積為6,則折合矩形EFGH的面積為_(kāi)_____;
(2)如圖4,已知△ABC,在圖4中畫(huà)出△ABC的邊BC上的折合矩形EFGH;
(3)如果△ABC的邊BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC邊上的高AD=______,正方形EFGH的對(duì)角線長(zhǎng)為_(kāi)_____
【答案】分析:(1)根據(jù)折疊得出△DEF≌△AEF,△BEH≌△DEH,△CFG≌△DFG,求出矩形EFGH的面積是S△DEF+S△DEH+S△DFG=S△ABC,代入求出即可;
(2)根據(jù)已知和折疊性質(zhì),結(jié)合圖2畫(huà)出即可;
(3)根據(jù)折疊性質(zhì)得出△AEF邊EF上高和△DEF邊EF上高相等,DH=BH,DG=GC,求出HG=BC,根據(jù)正方形的性質(zhì)求出EF=FG=GH=EH=a,即可求出AD,由勾股定理求出正方形EFGH的對(duì)角線即可.
解答:解:(1)∵沿EF折疊A與D重合,
∴△DEF≌△AEF,
∵△BED和△CFD都是等腰三角形,再將△BED和△CFD沿它們各自的對(duì)稱(chēng)軸EH、FG折疊,使B、C兩點(diǎn)都與點(diǎn)D重合,
∴△BEH≌△DEH,△CFG≌△DFG,
∴矩形EFGH的面積是S△DEF+S△DEH+S△DFG=S△ABC=×6=3,
故答案為:3.

(2)如右圖所示:

(3)∵根據(jù)折疊得出△BEH≌△DEH,△CFG≌△DFG,BC=2a,
∴△AEF邊EF上高和△DEF邊EF上高相等,DH=BH,DG=GC,
∴HG=BC=a,
∵四邊形EFGH是正方形,
∴EF=FG=GH=EH=a,
則AD=2EH=2a,
由勾股定理得:正方形EFGH的對(duì)角線是:=a,
故答案為:2a,a.
點(diǎn)評(píng):本題考查了正方形性質(zhì)、折疊性質(zhì)、勾股定理的應(yīng)用,通過(guò)做此題培養(yǎng)了學(xué)生的觀察圖形的能力和計(jì)算能力,題目比較典型,是一道比較好的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:
如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:
S△ABC=
1
2
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
(3)是否存在拋物線上一點(diǎn)P,使S△PAB=
9
8
S△CAB?若存在,求出P點(diǎn)的坐標(biāo);若精英家教網(wǎng)不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)在(2)的條件下,設(shè)拋物線的對(duì)稱(chēng)軸分別交AB、x軸于點(diǎn)D、M,連接PA、PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB
(4)在(2)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為x,△PAB的鉛垂高為h、面積為S,請(qǐng)分別寫(xiě)出h和S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:
如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
12
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問(wèn)題:精英家教網(wǎng)
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(-1,-4),交x軸于點(diǎn)A(-3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)點(diǎn)P是拋物線(在第三象限內(nèi))上的一個(gè)動(dòng)點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB
(3)是否存在一點(diǎn)P,使S△PAB=S△CAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•龍巖)如圖1,過(guò)△ABC的頂點(diǎn)A作高AD,將點(diǎn)A折疊到點(diǎn)D(如圖2),這時(shí)EF為折痕,且△BED和△CFD都是等腰三角形,再將△BED和△CFD沿它們各自的對(duì)稱(chēng)軸EH、FG折疊,使B、C兩點(diǎn)都與點(diǎn)D重合,得到一個(gè)矩形EFGH(如圖3),我們稱(chēng)矩形EFGH為△ABC的邊BC上的折合矩形.
(1)若△ABC的面積為6,則折合矩形EFGH的面積為
3
3
;
(2)如圖4,已知△ABC,在圖4中畫(huà)出△ABC的邊BC上的折合矩形EFGH;
(3)如果△ABC的邊BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC邊上的高AD=
2a
2a
,正方形EFGH的對(duì)角線長(zhǎng)為
2
a
2
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:
如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)設(shè)點(diǎn)P是拋物線(第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使S△PAB=S△CAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案