【題目】完成推理過程

1)如圖,已知∠1=2,∠B=C,求證:ABCD

證明∵∠1=2(已知),

且∠1=CGD(  )

∴∠2=CGD(     )

CEBF(  ),

C=BFD(  )

又∵∠B=C(已知)

BFD=B(  ),

ABCD(  )

【答案】對(duì)頂角相等;等量代換;同位角相等,兩直線平行;兩直線平行,同位角相等;等量代換;內(nèi)錯(cuò)角相等,兩直線平行

【解析】

先確定∠1=CGD是對(duì)頂角,利用等量代換,求得∠2=CGD,則可根據(jù):同位角相等,兩直線平行,證得:CEBF,又由兩直線平行,同位角相等,證得角相等,易得:∠BFD=C=B,則利用內(nèi)錯(cuò)角相等,兩直線平行,即可證得:ABCD

∵∠1=2(已知),且∠1=CGD(對(duì)頂角相等),

∴∠2=CGD(等量代換),

CEBF(同位角相等,兩直線平行).

∴∠C=BFD(兩直線平行,同位角相等).

又∵∠B=C(已知),

∴∠BFD=B(等量代換),

ABCD(內(nèi)錯(cuò)角相等,兩直線平行).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果a c b ,那么我們規(guī)定(a,b=c,例如:因?yàn)?/span>23 8 ,所以(2,8=3

1)根據(jù)上述規(guī)定,填空:(3,27= ,(4,1= ,(2, = ;

2)若記(3,5=a,(3,6=b,(330=c,求證: a b c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次課外實(shí)踐活動(dòng)中,同學(xué)們要測(cè)量某公園人工湖兩側(cè)A,B兩個(gè)涼亭之間的距離.現(xiàn)測(cè)得AC=50m,BC=100m,∠CAB=120°,請(qǐng)計(jì)算A,B兩個(gè)涼亭之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某童裝店有A、B兩種型號(hào)的童裝,其進(jìn)價(jià)與售價(jià)如下表所示:

型號(hào)

進(jìn)價(jià)(元)

售價(jià)(元)

A

90

108

B

100

130

根據(jù)市場(chǎng)需要,服裝店決定:購(gòu)進(jìn)A種服裝的數(shù)量要比購(gòu)進(jìn)B種服裝的2倍還多4件,且A種服裝購(gòu)進(jìn)數(shù)量不超過28件,并使這批服裝全部銷售完畢后的總利潤(rùn)不少于699元.若假設(shè)購(gòu)進(jìn)B種服裝x件,那么:

1)請(qǐng)寫出A、B兩種服裝全部銷售完畢后的總利潤(rùn)y/元用含x/件的式子表示;

2)請(qǐng)問該服裝店有幾種滿足條件的進(jìn)貨方案?哪種方案獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某探測(cè)隊(duì)在地面A、B兩處均探測(cè)出建筑物下方C處有生命跡象,已知探測(cè)線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某射擊隊(duì)有甲、乙兩名射手,他們各自射擊7次,射中靶的環(huán)數(shù)記錄如下:

甲:8,88,9,68,9

乙:107,8,85,108

1)分別求出甲、乙兩名射手打靶環(huán)數(shù)的平均數(shù)、眾數(shù)、中位數(shù);

2)如果要選擇一名成績(jī)比較穩(wěn)定的射手,代表射擊隊(duì)參加比賽,應(yīng)如何選擇?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小巷左石兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離BC0.7米,梯子頂端到地面的距離AC2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),梯子頂端到地面的距離AD1.5米,求小巷有多寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義符號(hào)min{a,b}的含義為:當(dāng)a≥b時(shí),min{a,b}=b;當(dāng)a<b時(shí),min{a,b}=a.如:min{1,﹣2}=﹣2,min{﹣1,2}=﹣1.
(1)求min{x2﹣1,﹣2};
(2)已知min{x2﹣2x+k,﹣3}=﹣3,求實(shí)數(shù)k的取值范圍;
(3)已知當(dāng)﹣2≤x≤3時(shí),min{x2﹣2x﹣15,m(x+1)}=x2﹣2x﹣15.直接寫出實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1+∠2=180°,∠A=C,DA平分∠BDF

1)求證:AECF

2BC平分∠DBE嗎?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案