【題目】如圖,在平面直角坐標系中,直線l的函數(shù)表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點P1,交x軸正半軸于點O2;以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3;以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4;…按此做法進行下去,其中的長___________.
【答案】
【解析】
連接P1O1,P2O2,P3O3,易求得PnOn垂直于x軸,可得的長為圓的周長,再找出圓半徑的規(guī)律即可得出結(jié)果.
解:連接P1O1,P2O2,P3O3,P4O4,…,如圖所示:
∵P1是⊙1上的點,
∴P1O1=OO1,
∵直線l解析式為y=x,
∴∠P1OO1=45°,
∴△P1OO1為等腰直角三角形,即P1O1⊥x軸,
同理,PnOn垂直于x軸,
∴的長為圓的周長,
∵以O1為圓心,O1O為半徑畫圓,交x軸正半軸于點O2,以O2為圓心,O2O為半徑畫圓,交x軸正半軸于點O3,以此類推,
∴OOn=2n-1,
∴=×2πOOn=π×2n-1=2n-2π,
∴n=2020時,= 22020-2π=22018π,
故答案為:22018π.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商購進某種商品,當購進量在20千克~50千克之間(含20千克和50千克)時,每千克進價是5元;當購進量超過50千克時,每千克進價是4元.此種商品的日銷售量y(千克)受銷售價x(元/千克)的影響較大,該經(jīng)銷商試銷一周后獲得如下數(shù)據(jù):
x(元/千克) | 5 | 5.5 | 6 | 6.5 | 7 |
y(千克) | 90 | 75 | 60 | 45 | 30 |
解答下列問題:
(1)求出y關(guān)于x的一次函數(shù)表達式:
(2)若每天購進的商品能夠全部銷售完,且當日銷售價不變,日銷售利潤為w元,那么銷售價定為多少時,該經(jīng)銷商銷售此種商品的當日利潤最大?最大利潤為多少元?此時購進量應(yīng)為多少千克?(注:當日利潤=(銷售價-進貨價)×日銷售量).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是AB、CD的中點,EG⊥AF,FH⊥CE,垂足分別為G,H,設(shè)AG=x,圖中陰影部分面積為y,則y與x之間的函數(shù)關(guān)系式是( 。
A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸的正半軸交于點.
(1)求點的坐標和該拋物線的對稱軸.
(2)點在軸的正半軸上,軸交拋物線于點、(點在點的左側(cè)),設(shè),
①當是的中點時,求的值;
②連結(jié),設(shè)與的周長之差為,求關(guān)于的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,點D是線段AB上一動點,連接BE.
填空: ①的值為 ;②∠DBE的度數(shù)為 .
(2)類比探究
如圖2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,點D是線段AB上一動點,連接BE.請判斷的值及∠DBE的度數(shù),并說明理由.
(3)拓展延伸
如面3,在(2)的條件下,將點D改為直線AB上一動點,其余條件不變,取線段DE的中點M,連接BM、CM,若AC=2,則當△CBM是直角三角形時,線段BE的長是多少?請直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數(shù)的解析式;
(2)求的面積;
(3)根據(jù)圖象直接寫出的x的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點,與軸交于點,點的坐標是,為拋物線上的一個動點,過點作軸于點,交直線于點,拋物線的對稱軸是直線.
(1)求拋物線的函數(shù)表達式和直線的解析式;
(2)若點在第二象限內(nèi),且,求的面積;
(3)在(2)的條件下,若為直線上一點,是否存在點,使為等腰三角形?若存在,直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC是圓O的內(nèi)接三角形,過點O作OD⊥AB與點D,連接OA,點E是AC的中點,延長EO交BC于點F.
(1)求證:△CEF∽△ODA.
(2)若,△ABC是不是等腰三角形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com