【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.

(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2

(2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ中PQ的長度等于5cm?

(3)在(1)中,當P,Q出發(fā)幾秒時,△PBQ有最大面積?

【答案】(1)1秒后,△PBQ的面積等于4cm2(2)2秒后,△PBQ中PQ的長度等于5cm;(3)當t=2.5時,面積最大.

【解析】試題分析:(1)經(jīng)過x秒鐘,PBQ的面積等于4cm2,根據(jù)點PA點開始沿AB邊向點B1cm/s的速度移動,點QB點開始沿BC邊向點C2cm/s的速度移動,表示出BPBQ的長可列方程求解;
2)利用勾股定理列出方程求解即可;
3)根據(jù)題意列出PBQ的面積與x的函數(shù)關(guān)系式即可解決.

試題解析:(1)設(shè)t秒后,PBQ的面積等于4cm2,

則列方程為:(5-t×2t×=4,

解得t1=1,t2=4(舍),

答:1秒后,PBQ的面積等于4cm2.

2)設(shè)x秒后,PBQPQ的長度等于5cm

列方程為:(5-x2+2x2=52,

解得x1=0(舍),x2=2

答:2秒后,PBQPQ的長度等于5cm

3設(shè)面積為Scm2,時間為t,

S=5-t×2t×=-t2+5t

t=2.5時,面積最大.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,E為對角線BD的延長線上一點.

1)求證:AE=CE

2)若BC=6,AE=10,∠BAE=120,求BE的長,并直接寫出DE的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.

1)已知:如圖1,四邊形ABCD的頂點A,BC在網(wǎng)格格點上,請你在如下的57的網(wǎng)格中畫出3個不同形狀的等鄰邊四邊形ABCD,要求頂點D在網(wǎng)格格點上;

2)如圖2,矩形ABCD中,AB=,BC=5,點EBC邊上,連結(jié)DEAFDE于點F,若DE=CD,找出圖中的等鄰邊四邊形;

3)如圖3,在RtABC中,ACB=90°,AB=4AC=2,DBC的中點,點MAB邊上一點,當四邊形ACDM等鄰邊四邊形時,求BM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A、B兩點.

(1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,

(1)寫出A、B、C的坐標.

(2)以原點O為中心,將△ABC圍繞原點O逆時針旋轉(zhuǎn)180°得到△A1B1C1,畫出△A1B1C1

(3)求(2)中C到C1經(jīng)過的路徑以及OB掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy,拋物線 y軸于點為A頂點為D,對稱軸與x軸交于點H

1求頂點D的坐標用含m的代數(shù)式表示);

2當拋物線過點1,-2),且不經(jīng)過第一象限時,平移此拋物線到拋物線的位置,求平移的方向和距離

3當拋物線頂點D在第二象限時,如果∠ADH=∠AHO,m的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,CDAB,垂足為D,點EBC上,EFAB,垂足為F,∠1=2

1)試說明DGBC的理由;

2)如果∠B=34°,且∠ACD=47°,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下面的解題過程的橫線上填空,并在括號內(nèi)注明理由

.如圖,已知A=F,C=D,試說明BDCE.

解:∵∠A=F(已知)

ACDF( )

∴∠D= ( )

∵∠C=D(已知)

∴∠1=C(等量代換)

BDCE( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在ABC 中,AD平分∠BACAEBC,∠B=40°,∠C=70°.

(1)求∠DAE的度數(shù);

(2)如圖②,若把“AEBC”變成“點FDA的延長線上,FEBC”,其它條件不變,求∠DFE的度數(shù).

查看答案和解析>>

同步練習冊答案