【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),正比例函數(shù)的圖像與反比例函數(shù)的圖像都經(jīng)過點(diǎn)A2,m).

(1)求反比例函數(shù)的解析式;

(2)點(diǎn)B軸的上,且OA=BA,反比例函數(shù)圖像上有一點(diǎn)C,且∠ABC=90°,求點(diǎn)C坐標(biāo).

【答案】1)反比例函數(shù)的解析式為:;(2)點(diǎn)C坐標(biāo)為(4,.

【解析】

1)將點(diǎn)A坐標(biāo)代入正比例函數(shù)解析式求出m,可得點(diǎn)A的完整坐標(biāo),再將點(diǎn)A代入反比例函數(shù)的解析式求出k即可;

2)過點(diǎn)AAD垂直OBD,根據(jù)等腰三角形三線合一可得OD=BD,求出B點(diǎn)坐標(biāo),利用兩點(diǎn)間距離公式表示出AB、BCAC,根據(jù)∠ABC=90°利用勾股定理列出方程,解方程即可解決問題.

解:(1)將點(diǎn)A2m)代入,得:,

A2,),

將點(diǎn)A2,)代入得:,

,

∴反比例函數(shù)的解析式為:;

2)過點(diǎn)AAD垂直OBD,

OA=BA

OD=BD,

A2),

OD=2,

OB=4,即B4,0),

設(shè)點(diǎn)C坐標(biāo)為(a,),

,,,

∵∠ABC=90°

,即

整理得:,

解得:a=4-3,

經(jīng)檢驗(yàn),a=4-3均是分式方程的解,

x0,

a=4

∴點(diǎn)C坐標(biāo)為(4,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,點(diǎn)PAB上一動(dòng)點(diǎn),連接DB、DP,AEDPE

(1)如圖①,若PAB的中點(diǎn),則=   ; =   ;

(2)如圖②,若時(shí),證明:AC=4BF

(3)如圖③,若PBA的延長(zhǎng)線上,當(dāng)=   時(shí),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答下列問題:

在一個(gè)不透明的口袋中有個(gè)紅球和若干個(gè)白球,這些球除顏色不同外其他都相同,請(qǐng)通過以下實(shí)驗(yàn)估計(jì)口袋中白球的個(gè)數(shù):從口袋中隨機(jī)摸出一球,記下顏色,再把它放回袋中,不斷重復(fù)上述過程,實(shí)驗(yàn)總共摸了次,其中有次摸到了紅球,那么估計(jì)口袋中有白球多少個(gè)?

請(qǐng)思考并作答:

在一個(gè)不透明的口袋里裝有若干個(gè)形狀、大小完全相同的白球,在不允許將球倒出來的情況下,如何估計(jì)白球的個(gè)數(shù)(可以借助其它工具及用品)?寫出解決問題的主要步驟及估算方法,并求出結(jié)果(其中所需數(shù)量用、、等字母表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,3)、B(3,0),以點(diǎn)B為圓心、2為半徑的⊙B上有一動(dòng)點(diǎn)P.連接AP,若點(diǎn)CAP的中點(diǎn),連接OC,則OC的最小值為(  )

A. 1 B. ﹣1 C. D. 2﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙OAB于點(diǎn)D,過點(diǎn)DDE⊥AC于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F

求證:

1AD=BD

2DF⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)分式的分子或分母可以因式分解,且這個(gè)分式不可約分,那么我們稱這

個(gè)分式為和諧分式”.

1)下列分式:;;. 其中是和諧分式 (填寫序號(hào)即可)

2)若為正整數(shù),且和諧分式,請(qǐng)寫出的值;

3)在化簡(jiǎn)時(shí),

小東和小強(qiáng)分別進(jìn)行了如下三步變形:

小東:

小強(qiáng):

顯然,小強(qiáng)利用了其中的和諧分式, 第三步所得結(jié)果比小東的結(jié)果簡(jiǎn)單,

原因是: ,

請(qǐng)你接著小強(qiáng)的方法完成化簡(jiǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】書店老板去圖書批發(fā)市場(chǎng)購買某種圖書,第一次用 1200 元購買若干本,按 每本 10 元出售,很快售完.第二次購買時(shí),每本書的進(jìn)價(jià)比第一次提高了 20%,他用1500 元所購買的數(shù)量比第一次多 10 本.

1)求第一次購買的圖書,每本進(jìn)價(jià)多少元?

2)第二次購買的圖書,按每本 10 元售出 200 本時(shí),出現(xiàn)滯銷,剩下的圖書降價(jià)后全部 售出,要使這兩次銷售的總利潤(rùn)不低于 2100 元,每本至多降價(jià)多少元?(利潤(rùn)=銷售收入一進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)O為坐標(biāo)原點(diǎn),OC=3OA,拋物線C1的頂點(diǎn)為G.

(1)求出拋物線C1的解析式,并寫出點(diǎn)G的坐標(biāo);

(2)如圖2,將拋物線C1向下平移k(k0)個(gè)單位,得到拋物線C2,設(shè)C2與x軸的交點(diǎn)為A′、B′,頂點(diǎn)為G′,當(dāng)A′B′G′是等邊三角形時(shí),求k的值:

(3)在(2)的條件下,如圖3,設(shè)點(diǎn)M為x軸正半軸上一動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線分別交拋物線C1、C2于P、Q兩點(diǎn),試探究在直線y=﹣1上是否存在點(diǎn)N,使得以P、Q、N為頂點(diǎn)的三角形與AOQ全等,若存在,直接寫出點(diǎn)M,N的坐標(biāo):若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=,∠B=120°,點(diǎn)EAD邊上的一個(gè)動(dòng)點(diǎn)(不與A,D重合),EF∥ABBC于點(diǎn)F,點(diǎn)GCD上,DG=DE.若△EFG是等腰三角形,則DE的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案