如圖,直線y=x﹣2與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C在直線AB上,且點(diǎn)C的縱坐標(biāo)為﹣1,點(diǎn)D在反比例函數(shù)y=的圖象上,CD平行于y軸,S△OCD=,則k的值為  

 

【答案】

3

【解析】

試題分析:把x=2代入y=x﹣2求出C的縱坐標(biāo),得出OM=2,CM=1,根據(jù)CD∥y軸得出D的橫坐標(biāo)是2,根據(jù)三角形的面積求出CD的值,求出MD,得出D的縱坐標(biāo),把D的坐標(biāo)代入反比例函數(shù)的解析式求出k即可.

解:∵點(diǎn)C在直線AB上,即在直線y=x﹣2上,C的橫坐標(biāo)是2,

∴代入得:y=×2﹣2=﹣1,即C(2,﹣1),

∴OM=2,

∵CD∥y軸,S△OCD=,

CD×OM=,

∴CD=,

∴MD=﹣1=

即D的坐標(biāo)是(2,),

∵D在雙曲線y=上,

∴代入得:k=2×=3.

故答案為:3.

考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.

點(diǎn)評(píng):本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、一次函數(shù)、反比例函數(shù)的圖象上點(diǎn)的坐標(biāo)特征、三角形的面積等知識(shí)點(diǎn),通過做此題培養(yǎng)了學(xué)生的計(jì)算能力和理解能力,題目具有一定的代表性,是一道比較好的題目.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線:y1=kx+b與拋物線:y2=x2+bx+c交于點(diǎn)A(-2,4),B(8,2).精英家教網(wǎng)
(1)求出直線解析式;
(2)求出使y1>y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,直線a、b都與直線c相交,給出下列條件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判斷a∥b的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,直線AB、CD相交于點(diǎn)E,EF⊥AB于E,若∠CEF=59°,則∠AED的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=6-x交x軸、y軸于A、B兩點(diǎn),P是反比例函數(shù)y=
4
x
(x>0)
圖象上位于直線下方的一點(diǎn),過點(diǎn)P作x軸的垂線,垂足為點(diǎn)M,交AB于點(diǎn)E,過點(diǎn)P作y軸的垂線,垂足為點(diǎn)N,交AB于點(diǎn)F.則AF•BE=(  )
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,直線a∥c,b∥c,直線d與直線a、b、c相交,已知∠1=60°,求∠2、∠3的度數(shù)(可在圖中用數(shù)字表示角).

查看答案和解析>>

同步練習(xí)冊(cè)答案