【題目】如圖,動點從(0,3)出發(fā),沿軸以每秒1個單位長度的速度向下移動,同時動點從出發(fā),沿軸以每秒2個單位長度的速度向右移動,當(dāng)點移動到點時,點、同時停止移動.點在第一象限內(nèi),在、移動過程中,始終有,且.則在整個移動過程中,點移動的路徑長為( )
A.B.C.D.
【答案】A
【解析】
由題意過P點作交于D點,作交于E點,并利用全等三角形判定,得出,從而分當(dāng)時,有(0,3),,設(shè)P點坐標(biāo)為以及當(dāng)時,有、O(0,0),、H,設(shè)P點坐標(biāo)為,求出P點坐標(biāo),繼而由點移動的路徑為一條線段利用兩點間距離公式求得點移動的路徑長.
解:由題意過P點作交于D點,作交于E點,如圖,
∵,
∴,
∴,
∵,
∴,即有,
由題意可知,
當(dāng)時,有(0,3),,設(shè)P點坐標(biāo)為,
由,即有,解得,
即此時P點坐標(biāo)為;
當(dāng)時,有、O(0,0),、H,設(shè)P點坐標(biāo)為,
由即圖上,即有,
解得,即此時P點坐標(biāo)為;
由圖可知點移動的路徑為一條線段,
則點移動的路徑長為:.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】報刊零售點從報社以每份0.30元買進一種晚報,零售點賣出的價格為0.50元,約定賣不掉的報紙可以退還給報社,退還的錢數(shù)y(元)與退還的報紙數(shù)量k(份)之間的函數(shù)關(guān)系式如下:當(dāng)0≤k<30時, y=;當(dāng)k≥30時,y=0.02k,現(xiàn)經(jīng)市場調(diào)查發(fā)現(xiàn),在一個月中(按30天記數(shù))有20天可賣出150份/天,有10天只能賣出100份/天,而報社規(guī)定每天批發(fā)給攤點的報紙的數(shù)量必須相同.
(1)若該家報刊攤點每天從報社買進的報紙數(shù)x份(滿足100<x≤150),月毛利潤為W元,求W關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)買進多少報紙時,月毛利潤最大?為多少?(注:月毛利潤=月總銷售額-月總成本).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)圖象上的兩點(x1,y1)和(3,y2),若y1>y2,則x1的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為4,P 為BC上的動點,連接PA,作PQ⊥PA,PQ交CD于Q,連接AQ ,則AQ的最小值是( )
A.5B.C.D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)精準(zhǔn)扶貧,幫助貧困戶承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場銷售,經(jīng)市場調(diào)查發(fā)現(xiàn),草莓銷售不會虧本,且每天的銷售量y(千克)與銷售單價x(元/千克)之間函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)當(dāng)該品種草莓的定價為多少時,每天銷售獲得利潤最大?最大利潤是多少?
(3)某村今年草莓采摘期限30天,預(yù)計產(chǎn)量6000千克,則按照(2)中的方式進行銷售,能否銷售完這批草莓?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與坐標(biāo)軸分別交于、、三點,其中,點在軸正半軸上,連接、.點從點出發(fā),沿向點移動;同時點從點出發(fā),沿軸向點移動,它們移動的速度都是每秒1個單位長度,當(dāng)其中一點到達終點時,另一點隨之停止移動,連接,設(shè)移動時間為.
(1)若時,與相似,求這個二次函數(shù)的表達式;
(2)若可以為直角三角形,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B兩地相距2.4km,甲騎車勻速從A地前往B地,如圖表示甲騎車過程中離A地的路程y(km)與他行駛所用的時間x(min)之間的關(guān)系.根據(jù)圖像解答下列問題:
(1)甲騎車的速度是 km/min;
(2)若在甲出發(fā)時,乙在甲前方0.6km處,兩人均沿同一路線同時出發(fā)勻速前往B地,在第3分鐘甲追上了乙,兩人到達B地后停止.請在下面同一平面直角坐標(biāo)系中畫出乙離A地的距離y乙(km)與所用時間x(min)的關(guān)系的大致圖像;
(3)乙在第幾分鐘到達B地?
(4)兩人在整個行駛過程中,何時相距0.2km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC,∠BAC=α,直線l經(jīng)過點A(不經(jīng)過點B或點C),點C關(guān)于直線l的對稱點為點D,連接BD,CD.
(1)如圖1,
①求證:點B,C,D在以點A為圓心,AB為半徑的圓上.
②直接寫出∠BDC的度數(shù)(用含α的式子表示)為______.
(2)如圖2,當(dāng)α=60°時,過點D作BD的垂線與直線l交于點E,求證:AE=BD.
(3)如圖3,當(dāng)α=90°時,記直線l與CD的交點為F,連接BF.將直線l繞點A旋轉(zhuǎn),當(dāng)線段BF的長取得最大值時,直接寫出tan∠FBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于點D,過點D作⊙O的切線交BC于點E,連接OE
(1)求證:△DBE是等腰三角形
(2)求證:△COE∽△CAB
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com